Answer:
Wouldn’t his or hers speed be 10m?
Explanation:
because 60 divided by 6 = 10
so 10m per second?
Explanation:
The inertia of a 4 kg mass is four times as great as a 1 kg mass.
Answer:
c) F = 16000 N
Explanation:
For this exercise we use Newton's second law
F = ma
they tell us that adding the other wagons the acceleration of the locomotive must be maintained
F = m a
by adding the other four wagons
mass = 4 no
therefore to maintain the force you must also raise the same factor
Fe = 4Fo
Fe = 4 4000
F = 16000 N
Answer: position (x) and time (t)
Explanation:
A body is said to be in motion when its position changes with time with respect to a stationary observer.
Following are the types of motion:
<u>Uniform motion</u>: When equal amount of distance is covered in equal intervals of time.
<u>Non-Uniform motion</u>: When unequal amount of distance is covered in equal intervals of time.
Motion can be of the following types as well:
<u>Rectilinear motion</u>: when object moves in a straight line.
<u>Circular motion</u>: when object moves in a curved path.
<u>Periodic motion</u>: when motion repeats itself in fixed intervals of time.
Thus, in order to define motion, only two variables are required: position and time. Measuring these variables can determine whether the object is in motion or not and the type of motion.
Answer:
Power, P = 162.53 Watts
Explanation:
Given that,
Mass, m = 200 g = 0.2 kg
Initial speed of the snake, u = 0
Final speed of the snake, v = 32 m/s
Time, t = 0.63 s
Power of an object is given by :




P = 162.53 Watts
So, the power of the rattlesnake is 162.53 Watts. Hence, this is the required solution.