Answer:
Pasteurization involves heating liquids at high temperatures for short amounts of time, it can make it better if you wanted hot cocoa but bad for milk
Explanation:
Answer:
Cells are the fundamental units of life ' the bricks from which all your. which are built of your cells, will become compromised, and you can. of these new cells from the nutrients you get in your food is one way. Let's take a look inside one of your cells and see what the nutrients really do.
Explanation:
Answer:
Its rich carbon content gives coal most of its energy content. When coal is burned in the presence of air or oxygen, heat energy is released. This energy can then be converted to other forms of useful energy. Coal-fired plants produce electricity by burning coal in a boiler to produce steam. The steam produced, under tremendous pressure, flows into a turbine, which spins a generator to create electricity.
Hope this helps! :)
This is false. An alcohol does indeed have a polar C-O single bond, but what we should really be focusing on is the extraordinarily polar O-H single bond. When oxygen, fluorine, or nitrogen is bound to a hydrogen atom, there is a small (but not negligible) charge separation, where the eletronegative N, O, or F has a partial negative charge, and the H has a partial positive charge. Water has two O-H single bonds in it (structure is H-O-H). The partially negative charge on the O of the water molecule (specifically around the lone pair) can become attracted either a neighboring water molecule's partially positive H atom, or an alcohol's partially positive H atom. This is weak (and partially covalent) attraction is called a hydrogen bond. This is stronger than a typical dipole-dipole attraction (as would be seen between neighboring C-O single bonds), and much stronger than dispersion forces (between any two atoms). When the solvent (water) and the solute (the alcohol) both exhibit similar intermolecular forces (hydrogen bonding being the most important in this case), they can mix completely in all proportions (i.e. they are miscible) in water.