Answer:
1.02mol
Explanation:
Using the general gas equation below;
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
According to the information provided in this question,
P = 2.0 atm
V = 11.4L
T = 273K
n = ?
Using PV = nRT
n = PV/RT
n = 2 × 11.4/ 0.0821 × 273
n = 22.8/22.41
n = 1.017
n = 1.02mol
Answer is 3
s -1
p - 3
d - 5
f - 7
Answer:
The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.
Explanation:
..[1]
..[2]
..[3]
..[4]
Using Hess's law:
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
2 × [4] = [2]- (3 ) × [1] - (2) × [3]
The standard reaction enthalpy for the given reaction is 235.15 kJ/mol.