Answer:
0.34148 m
Explanation:
= Resistivity of tungsten = 
d = Diameter = 0.0018 inch
r = Radius = 

= Temperature coefficient of tungsten = 
Power is given by

We have the equation
![R_2=R_1[1+\alpha(T_2-T_1)]\\\Rightarrow R_1=\dfrac{R_2}{1+\alpha(T_2-T_1)}\\\Rightarrow R_1=\dfrac{144}{1+0.0045(2550-25)}\\\Rightarrow R_1=11.64812\ \Omega](https://tex.z-dn.net/?f=R_2%3DR_1%5B1%2B%5Calpha%28T_2-T_1%29%5D%5C%5C%5CRightarrow%20R_1%3D%5Cdfrac%7BR_2%7D%7B1%2B%5Calpha%28T_2-T_1%29%7D%5C%5C%5CRightarrow%20R_1%3D%5Cdfrac%7B144%7D%7B1%2B0.0045%282550-25%29%7D%5C%5C%5CRightarrow%20R_1%3D11.64812%5C%20%5COmega)
Resistance is given by

The length of the filament is 0.34148 m
Explanation:
We have,
Semimajor axis is 
It is required to find the orbital period of a dwarf planet. Let T is time period. The relation between the time period and the semi major axis is given by Kepler's third law. Its mathematical form is given by :

G is universal gravitational constant
M is solar mass
Plugging all the values,

Since,

So, the orbital period of a dwarf planet is 138.52 years.
It would be oraganic matter I think.
The time must be measured with respect to gravity. As it falls, it has free fall that is the force acting on it will be the gravity.With the distance in account, d = 1/2 gt²
t = √(2d/g)
Answer: 3.92 N.
Explanation:
Your box weighs 400g, or 0.4kg. In order to lift it, you need to overcome the force of gravity. F = ma, and acceleration due to gravity is -9.8 m/s^2. So gravity acts on the box with a force of 0.4 kg * -9.8 m/s^2 = -3.92 N. A force of +3.92 N is required to overcome this.