Answer:
The correct answer to the question is;
North
Explanation:
Fleming's left hand rule states that the direction of a magnetic field acting on a current carrying conductor is perpendicular to both the force acting on the current carrying conductor and the direction of the current.
Therefore, since the direction of the current is upward and a force is acting with a direction towards the east of the wire then the direction of the magnetic field is northwards.
net force is mass multiplied by acceleration. hope this helps
Answer:
1. 77.31 N/m
2. 26.2 m/s
3. increase
Explanation:
1. According to the law of energy conservation, when she jumps from the bridge to the point of maximum stretch, her potential energy would be converted to elastics energy. Her kinetic energy at both of those points are 0 as speed at those points are 0.
Let g = 9.8 m/s2. And the point where the bungee ropes are stretched to maximum be ground 0 for potential energy. We have the following energy conservation equation


where m = 75 kg is the mass of the jumper, h = 72 m is the vertical height from the jumping point to the lowest point, k (N/m) is the spring constant and x = 72 - 35 = 37 m is the length that the cord is stretched


2. At 35 m below the platform, the cord isn't stretched, so there isn't any elastics energy, only potential energy converted to kinetics energy. This time let's use the 35m point as ground 0 for potential energy

where H = 35m this time due to the height difference between the jumping point and the point 35m below the platform


3. If she jumps from her platform with a velocity, then her starting kinetic energy is no longer 0. The energy conservation equation would then be

So the elastics energy would increase, which would lengthen the maximum displacement of the cord