1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Keith_Richards [23]
3 years ago
5

A spring on Earth has a 0.500 kg mass suspended from one end and the mass is displaced by 0.3 m. What will the displacement of t

he same mass on the same spring be on the Moon, where the acceleration due to gravity is one sixth that of Earth? Show your work.
Physics
1 answer:
julia-pushkina [17]3 years ago
6 0

To solve this problem we will apply the concepts related to the Force of gravity given by Newton's second law (which defines the weight of an object) and at the same time we will apply the Hooke relation that talks about the strength of a body in a system with spring.

The extension of the spring due to the weight of the object on Earth is 0.3m, then

F_k = F_{W,E}

kx_1 = mg

The extension of the spring due to the weight of the object on Moon is a value of x_2, then

kx_2 = mg_m

Recall that gravity on the moon is a sixth of Earth's gravity.

kx_2 = m\frac{g}{6}

kx_2 = \frac{1}{6} mg

kx_2 = \frac{1}{6} kx_1

x_2 = \frac{1}{6} x_1

We have that the displacement at the earth was x_1 = 0.3m, then

x_2 = \frac{1}{6} 0.3

x_2 = 0.05m

Therefore the displacement of the mass on the spring on Moon is 0.05m

You might be interested in
A proton moves in the negative x-direction through a uniform magnetic field in the negative y-direction what is the direction of
ANEK [815]

A proton travels through a constant magnetic field in the negative y-direction while moving in the negative x-direction. The proton will be subject to a magnetic pull that is directed into the page. Option B is correct.

<h3>What is the right-hand thumb rule?</h3>

Hold a current-carrying conductor in your right hand with your thumb pointing in the direction of the current then wrap your fingers around the conductor and orient them in the direction of the magnetic field lines.

A proton travels through a constant magnetic field in the negative y-direction while moving in the negative x-direction.

The proton will be subject to a magnetic pull that is directed into the page.

Hence, option B is correct.

To learn more about the right-hand thumb rule refer to the link;

brainly.com/question/11521829

#SPJ1

4 0
2 years ago
Under the assumption that the beam is a rectangular cantilever beam that is free to vibrate, the theoretical first natural frequ
BartSMP [9]

Answer:

a) Δf = 0.7 n , e)   f = (15.1 ± 0.7) 10³ Hz

Explanation:

This is an error about the uncertainty or error in the calculated quantities.

Let's work all the magnitudes is the SI system

The frequency of oscillation is

        f = n / 2π L² √( E /ρ)

where n is an integer

Let's calculate the magnitude of the oscillation

       f = n / 2π (0.2335)² √ (210 10⁹/7800)

       f = n /0.34257 √ (26.923 10⁶)

       f = n /0.34257    5.1887 10³

       f = 15.1464 10³ n

a) We are asked for the uncertainty of the frequency (Df)

       Δf = | df / dL | ΔL + df /dE ΔE + df /dρ Δρ

in this case no  error is indicated in Young's modulus and density, so we will consider them exact

       ΔE = Δρ = 0

       Δf = df /dL  ΔL

       df = n / 2π   √E /ρ   | -2 / L³ | ΔL

       df = n / 2π 5.1887 10³ | 2 / 0.2335³) 0.005 10⁻³

       df = n 0.649

Absolute deviations must be given with a single significant figure

        Δf = 0.7 n

b, c) The uncertainty with the width and thickness of the canteliver is associated with the density

 

In your expression there is no specific dependency so the uncertainty should be zero

The exact equation for the natural nodes is

          f = n / 2π L² √ (E e /ρA)

where A is the area of ​​the cantilever and its thickness,

In this case, they must perform the derivatives, calculate and approximate a significant figure

        Δf = | df / dL | ΔL + df /de  Δe + df /dA  ΔA

        Δf = 0.7 n + n 2π L² √(E/ρ A) | ½  1/√e | Δe

               + n / 2π L² √(Ee /ρ) | 3/2 1√A23  |

the area is

        A = b h

        A = 24.9  3.3  10⁻⁶

        A = 82.17 10⁻⁶ m²

        DA = dA /db ΔB + dA /dh Δh

        dA = h Δb + b Δh

        dA = 3.3 10⁻³ 0.005 10⁻³ + 24.9 10⁻³ 0.005 10⁻³

        dA = (3.3 + 24.9) 0.005 10⁻⁶

        dA = 1.4 10⁻⁷ m²

let's calculate each term

         A ’= n / 2π L² √a (E/ρ A) | ½ 1 /√ e | Δe

         A ’= n/ 2π L² √ (E /ρ)      | ½ 1 / (√e/√ A) |Δe

        A ’= 15.1464 10³ n ½ 1 / [√ (24.9 10⁻³)/ √ (81.17 10⁻⁶)] 0.005 10⁻³

        A '= 0.0266  n

        A ’= 2.66 10⁻² n

       A ’’ = n / 2π L² √ (E e /ρ) | 3/2  1 /√A³ |

       A ’’ = n / 2π L² √(E /ρ) √ e | 3/2  1 /√ A³ | ΔA

       A ’’ = n 15.1464 10³ 3/2 √ (24.9 10⁻³) /√ (82.17 10⁻⁶) 3 1.4 10⁻⁷

       A ’’ = n 15.1464 1.5 1.5779 / 744.85 1.4 10⁴

       A ’’ = 6,738 10²

we write the equation of uncertainty

     Δf = n (0.649 + 2.66 10⁻² + 6.738 10²)

The uncertainty due to thickness is

    Δf = 3 10⁻² n

The uncertainty regarding the area, note that this magnitude should be measured with much greater precision, specifically the height since the errors of the width are very small

     Δf = 7 10² n

 d)    Δf = 7 10² n

e) the natural frequency n = 1

       f = (15.1 ± 0.7) 10³ Hz

7 0
3 years ago
6. A Cadillac Escalade has a mass of 2 569.6 kg, if it accelerates at 4.65m/S<br> force on the car?
SVETLANKA909090 [29]

Answer:

F= 2569.6 X 4.65 = 11,948.64

*Multiply the mass and the acceleration to find the force

Explanation:

5 0
3 years ago
Read 2 more answers
How can a person detect infrared rays without an instrument?
natita [175]
So we want to know how can we detect infrared rays without an instrument. Infrared rays or heat, are a part of electromagnetic spectrum. We have specialized nerve cells in our skin called thermoreceptors that can detect differences in temperature that are produced by infrared part of EM spectrum.
7 0
3 years ago
Read 2 more answers
Explain how objects in motion have kinetic energy, use examples
Ann [662]
Kinetic energy is energy that a body possesses by virtue of being in motion, there for if an object is moving, it has kinetic energy.
Example; A roller coaster sitting on top of hill has potential energy. When it starts to move and is going down the hill, it has kinetic energy. :)
8 0
3 years ago
Other questions:
  • A sound wave propagates through a region filled with an ideal gas at constant temperature T. It approaches an acoustically perme
    8·1 answer
  • Bob is pulling a 30kg filing cabinet with a force of 200n , but the filing cabinet refuses to move. the coefficient of static fr
    7·1 answer
  • Which of the following is a correct order in which air moves through the human respiratory system when a person inhales?
    8·1 answer
  • What force keeps an object moving in a circle
    11·1 answer
  • An automobile having a mass of 1,000 kg is driven into a brick wall in a safety test. The bumper behaves like a spring with cons
    15·1 answer
  • A net force of 500 newtons causes
    14·1 answer
  • According to Archimedes’ principle, the mass of a floating object equals the mass of the fluid displaced by the object. Use this
    10·1 answer
  • Please help... <br> !!!!!!!
    10·1 answer
  • If you let him have Czechoslovakia, he is going to.​
    13·1 answer
  • What is grandfather Paradox?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!