Answer: The height of its fourth bounce = 0.43m
Explanation:
The coefficient of restitution denoted by (e), is the ratio that shows the final velocity to initial relative velocity between two objects after collision
IT is given by the formula in terms of height as
Coefficient of Restitution, e = √(2gh))/√(2gH) = √(h/H)
Where
Coefficient of Restitution, e= 0.821
H = 2.07 m
At fourth bounce , we have that
Coefficient of Restitution, e⁴ =√(h₄/H)
Putting the given values and solving , we have,
e⁴ =√(h₄/H)
= 0.821⁴ = √(h₄/2.07)
(0.821⁴ )² =h₄/2.07
0.2064 x 2.07 = 0.427 = 0.43
At fourth bounce, h₄ height = 0.43m
The orbital period increases if the orbital distance is increased.
Answer:
The velocity of the players will be <u>2.88 m/s</u> in the <u>east</u> direction.
Explanation:
Let 'v' be the velocity of the players after collision.
Consider the east direction as positive direction.
Given:
Mass of the first player is,
kg
Initial velocity of the first player is,
m/s
Mass of the second player is,
kg
Initial velocity of the second player is,
m/s
In order to solve this problem we use the law of conservation of momentum which says that the total momentum must be conserved before and after the collision. So we can write:

Solving for v, we get:

Therefore, their velocity after the collision is 2.88 m/s.
The sign of the velocity after collision is positive. So, the players will move in the east direction only after collision.
True, the accepted modern theory of life is biological evolution.
Answer:
A calorimeter uses the temperature change of water to determine the <u>specific heat </u> of another substance.
Explanation: