Answer:
On the magnitude of the charges, on their separation and on the sign of the charges
Explanation:
The magnitude of the electric force between two charges is given by

where
k is the Coulomb's constant
q1, q2 are the magnitudes of the two charges
r is the separation between the charges
From the formula, we see that the magnitude of the force depends on the following factors:
- magnitude of the two charges
- separation between the charges
Moreover, the direction of the force depends on the sign of the two charges. In fact:
- if the two charges have same sign, the force is repulsive
- if the two charges have opposite signs, the force is attractive
no it can't do this why because I think that it is water and it can not go any where.
Answer:
4.96 × 10⁵ Pa
Explanation:
F = mg

This force is evenly distributed on the three leg
radius, r = d/2
= 2.8 / 2
= 1.4 cm = 0.014 m
total cross sectional area of the three legs, A = 3*pi*r^2

Pressure due to weight,
P = Weight/A

P = 4.96 × 10⁵ Pa
Answer:

Explanation:
GIVEN
diameter = 15 fm =
m
we use here energy conservation

there will be some initial kinetic energy but after collision kinetic energy will zero

on solving these equations we get kinetic energy initial
J ..............(i)
That is, the alpha particle must be fired with 35.33 MeV of kinetic energy. An alpha particle with charge q = 2 e
and gains kinetic energy K =e∆V ..........(ii)
by accelerating through a potential difference ∆V
Thus the alpha particle will
just reach the
nucleus after being accelerated through a potential difference ∆V
equating (i) and second equation we get
e∆V = 35.33 Me V
