Explanation:
Law of conservation of momentum states that in an isolated system when two objects collide with each other then total momentum before and after the collision is equal.
Thus, we can conclude that the law of conservation of momentum states that the total momentum of interacting objects does not change. This means the total momentum before a collision or explosion is equal to the to momentum after a collision or explosion.
The best and most correct answer among the choices provided by the question is <span>B.sound waves</span><span>.
</span>
<span>Particles move together or apart parallel to the direction of the sound wave.
</span>
Hope my answer would be a great help for you.
If you have more questions feel free to ask here at Brainly.
Answer:
The force of static friction acting on the luggage is, Fₓ = 180.32 N
Explanation:
Given data,
The mass of the luggage, m = 23 kg
You pulled the luggage with a force of, F = 77 N
The coefficient of static friction of luggage and floor, μₓ = 0.8
The formula for static frictional force is,
Fₓ = μₓ · η
Where,
η - normal force acting on the luggage 'mg'
Substituting the values in the above equation,
Fₓ = 0.8 x 23 x 9.8
= 180.32 N
Hence, the minimum force require to pull the luggage is, Fₓ = 180.32 N
We can solve the problem by using the first law of thermodynamics:

where
is the change in internal energy of the system
is the heat absorbed by the system
is the work done by the system on the surrounding
In this problem, the work done by the system is

with a negative sign because the work is done by the surrounding on the system, while the heat absorbed is

with a negative sign as well because it is released by the system.
Therefore, by using the initial equation, we find
