Answer:
0.661 s, 5.29 m
Explanation:
In the y direction:
Δy = 2.14 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(2.14 m) = (0 m/s) t + ½ (9.8 m/s²) t²
t = 0.661 s
In the x direction:
v₀ = 8 m/s
a = 0 m/s²
t = 0.661 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (8 m/s) (0.661 s) + ½ (0 m/s²) (0.661 s)²
Δx = 5.29 m
Round as needed.
Answer:
1) The force Christian can exert on his bicycle before picking up the the cargo is 529.74 N
2) The force Christian can exert on his bicycle after picking up the the cargo is 647.46 N
Therefore, Christian has to exert more force on his bike after picking up the cargo
Explanation:
The given parameters are;
The mass of Christian and his bicycle = 54 kg
The mass of the cargo = 12 kg
1) The force Christian can exert on his bicycle before picking up the the cargo = Mass of Christian and his bicycle × Acceleration due to gravity
∴ The force Christian can exert on his bicycle before picking up the the cargo = 54 kg × 9.81 m/s² = 529.74 N
2) The force Christian can exert on his bicycle after picking up the the cargo = (54 + 12) kg × 9.81 m/s² = 647.46 N
Therefore, Christian has to exert more force on his bike after picking up the cargo.
Answer:
See answers below
Explanation:
a.
F = mg,
15.5 N = m(9.8 m/s²)
m = 1.58 kg
b.
Fnet = Applied force - resistance,
Fnet = 18 N - 4.30 N,
Fnet = 13.70 N
Fnet = ma
13.70 N = (1.58 kg)a
a = 8.67 m/s²
For the free body diagram, draw a box with an upward arrow labeled 15.5 N, a downward label labeled 15.5 N, a right label labeled 18 N, and a left label labeled 4.30 N.
Answer:
The distance is 
Explanation:
From the question we are told that
The wavelength of the light is 
The distance between the slit is 
The between the first and second dark fringes is 
Generally fringe width is mathematically represented as

Where D is the distance of the slit to the screen
Hence

substituting values


To find:
The equation to find the period of oscillation.
Explanation:
The period of oscillation of a pendulum is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of the acceleration due to gravity.
Thus the period of a pendulum is given by the equation,

Where L is the length of the pendulum and g is the acceleration due to gravity.
On substituting the values of the length of the pendulum and the acceleration due to gravity at the point where the period of the pendulum is being measured, the above equation yields the value of the period of the pendulum.
Final answer:
The period of oscillation of a pendulum can be calculated using the equation,