Answer:
Distance between them after 5 hours is 300 km.
Explanation:
From point A a vehicle leaves at 80 km / h at the same time a cyclist leaves at 20 km / h at what distance is they from each other after 5 hours.
Distance traveled by A in 5 hours = speed x time = 80 x 5 = 400 km
Distance traveled by B in 5 hours = speed x time = 20 x 5 = 100 km
The distance between them after 5 hours = 400 - 100 = 300 km

Explanation:
Newton's 2nd Law can be expressed in terms of the object's momentum, in this case the expelled exhaust gases, as
(1)
Assuming that the velocity remains constant then

Solving for
we get

Before we plug in the given values, we need to convert them first to their appropriate units:
The thrust <em>F</em><em> </em> is

The exhaust rate dm/dt is


Therefore, the velocity at which the exhaust gases exit the engines is


Answer:
8.61 min
Explanation:
original mass= 12.65
first half life = 12.65/2 = 6.325
second half life = 6.325/2 = 3.1625
Note : 3.1625 is the closest to the value (3.115) given so we work with it
total time for decay =17.22
therefore two decays = 17.22/2= 8.61
Answer:
F=94.32*10⁻⁹N , The force F is repusilve because both charges have the same sign (+)
Explanation:
Two point charges (q₁, q₂) separated by a distance (d) exert a mutual force (F) whose magnitude is determined by the following formula:
F=K*q₁*q₂/d² Formula (1)
F: Electric force in Newtons (N)
K : Coulomb constant in N*m²/C²
q₁,q₂:Charges in Coulombs (C)
d: distance between the charges in meters(m)
Equivalence
1nC= 10⁻⁹C
Data
K=8.99x10⁹N*m²/C²
q₁ = 7.94-nC= 7.94*10⁻⁹C
q₂= 4.14-nC= 4.14 *10⁻⁹C
d= 1.77 m
Magnitude of the electrostatic force that one charge exerts on the other
We apply formula (1):

F=94.32*10⁻⁹N , The force F is repusilve because both charges have the same sign (+)