Answer:
Average power output of athlete = 11025 Watts
Explanation:
Work done is defined as the product of force applied and the displacement perpendicular to the force.
Work = 
Power is defined as work done per unit time.
Power = 
Here the person lifts 900 kg.
Height = 2.5 m
Time interval = 2 seconds
Force = 
= 
= 8820 N
Work done = 
= 
= 22050 J
Power = 
= 11025 Watt
Answer:
The width of the strand of hair is 1.96 10⁻⁵ m
Explanation:
For this diffraction problem they tell us that it is equivalent to the diffraction of a single slit, which is explained by the equation
<h3> a sin θ =± m λ
</h3><h3 />
Where the different temrs are: “a” the width of the hair, λ the wavelength, θ the angle from the center, m the order of diffraction, which is the number of bright rings (constructive diffraction)
We can see that the diffraction angle is missing, but we can find it by trigonometry, where L is the distance of the strand of hair to the observation screen and "y" is the perpendicular distance to the first minimum of intensity
L = 1.25 m 100 cm/1m = 125 cm
y = 5.06 cm
Tan θ = y/L
Tan θ = 5.06/125
θ = tan⁻¹ ( 0.0405)
θ = 2.32º
With this data we can continue analyzing the problem, they indicate that they measure the distance to the first dark strip, thus m = 1
a = m λ / sin θ
a = 1 633 10⁻⁹ 1.25/sin 2.3
a = 1.96 10⁻⁵ m
a = 0.0196 mm
The width of the strand of hair is 1.96 10⁻⁵ m
Volumes of liquids such as water can be readily measured in a graduated cylinder.
If a negative object is used to charge a neutral object, then both objects become charged negatively. In order for the neutral sphere to become negative, it must gain electrons from the negatively charged rod. A metal sphere is electrically neutral. It is touched by a positively charged metal rod.
<span>The amount of dissolved oxygen in water may decrease
because of the increase in organic matter in the water. <span>Aquatic organisms breathe and use oxygen. Large amounts of
oxygen are consumed by the decomposition of bacteria (when there are large
amounts of dead matter to decompose, there will be a significant number of
bacteria). Examples: dead organic matter (algae), wastewater, garden waste,
oils and fats, all this results in a decrease in dissolved oxygen in the water.</span></span>