Answer:
A) Propagation of pressure fluctuations in a medium
B) air is the medium in which the wave is transported,
Explanation:
Part A.
A sound wave is a longitudinal oscillation of the molecules that forms in a material medium, they can be solid, liquid or gases, therefore the wave propagates in the same direction as the oscillation of the particles.
The most correct answer is:
* Propagation of pressure fluctuations in a medium
Part b
air is the medium in which the wave is transported, otherwise it cannot propagate
Answer:

Explanation:
Since the cable touches the road at the mid point of two towers
so here we have vertex at that mid point taken to be origin
now the maximum height on the either side is given as

horizontal distance of the tower from mid point is given as

now from the equation of parabola we have



now we have

now we need to find the height at distance of 200 ft from center
so we have


Answer:
Average speed of Elain = 60 km/h
Explanation:
Total Distance covered by Jack = 360km
Average Speed of Jack = 80 km/h
Time taken by Jack to complete his journey = Distance / Average speed = 360 km / 80 km/h
Time taken by Jack to complete his journey = 4.5 hours
As it is given the both Jack and Elain travelled the same amount of distance:
Total distance travelled by Elain = 360 km
It is given that Elain took 1.5 hourse more than Jack to cover the distance, so Time taken by Elain to cover the distance is = 4.5 hours + 1.5 hours = 6 hours
Average speed of Elain = Distance/ time = 360 km / 6 hours
Average speed of Elain = 60 km/h
If the wavelength<span> is given, the energy can be determined by first using the wave equation (c = λ × ν) to </span>find<span> the frequency, then using Planck's equation to </span>calculate<span> energy. Use the equations above to answer the following questions. 1. Ultraviolet radiation has a frequency of 6.8 × 1015 1/s.</span>
Answer:The rate of ejection of photoelectrons will increase
Explanation:
If the frequency of incident monochromatic light is held constant and its intensity is increased, the rate of ejection of photoelectrons from the metal surface increases with increase in intensity of the monochromatic light. More current flows due to more ejection of photoelectrons.