Answer:
The number of moles = 0.06 moles
Explanation:
i) Formula
Number of moles = Mass of the sample ÷ Molar masses of the substances
ii) Number of moles = 10.0 ÷ (137)+(19×2)
= 10.0 ÷ 175
= 0.06 moles
Answer:
<u>STEP I</u>
This is the balanced equation for the given reaction:-

<u>STEP II</u>
The compounds marked with (aq) are soluble ionic compounds. They must be
broken into their respective ions.
see, in the equation KOH, H2SO4, and K2SO4 are marked with (aq).
On breaking them into their respective ions :-
- 2KOH -> 2K+ + 2OH-
- H2SO4 -> 2H+ + (SO4)2-
- K2SO4 -> 2K+ + (SO4)2-
<u>STEP III</u>
Rewriting these in the form of equation

<u>STEP </u><u>IV</u>
Canceling spectator ions, the ions that appear the same on either side of the equation
<em>(note: in the above step the ions in bold have gotten canceled.)</em>

This is the net ionic equation.
____________________________

- KOH has been taken as aqueous because the question informs us that we have a solution of KOH. by solution it means that KOH has been dissolved in water before use.
[Alkali metal hydroxides are the only halides soluble in water ]
The molar mass of the gene fragment is 19182 g/mol.
What is osmotic pressure ?
Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. It is also defined as the measure of the tendency of a solution to take in a pure solvent by osmosis. Potential osmotic pressure is the maximum osmotic pressure that could develop in a solution if it were separated from its pure solvent by a semipermeable membrane.
We employ the osmotic pressure equation to determine the solute's concentration, which is:
π = iMRT
Using the values in the equation above, we obtain: 19182 g/mol.
To learn more about gene fragment click on the link below:
brainly.com/question/22426204
#SPJ4
Answer: If the potential energy of the reaction system decreases, then kinetic energy in the surroundings increases and the temperature of the surroundings rises
Explanation:
There are 5 valence electrons in a atom of phosphorus.