1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Olin [163]
3 years ago
8

Which factors influence changes in consumer demands? check all that apply

Engineering
2 answers:
hoa [83]3 years ago
8 0

Hello!

The factors that affect consumer demand for a product is the price and the person's income.

If the price of the product increases, the demand for the product will decrease. If the price of the product decreases, then the demand for the product will increase.

Demand is also affected by a person's income. The more money a person makes, the more money he has to spend on the product, which increases demand. If a person makes less money than he did before, demand for a product will decrease because he can no longer afford it.

I hope this helps you! Have a lovely day!

- Mal

Simora [160]3 years ago
8 0

Answer:

Here is the right answer: Elasticity, Clearance sales and income.

Hope it helps.

You might be interested in
The 30-kg gear is subjected to a force of P=(20t)N where t is in seconds. Determine the angular velocity of the gear at t=4s sta
tatyana61 [14]

Answer:

\omega =\frac{24}{1.14375}=20.983\frac{rad}{s}

Explanation:

Previous concepts

Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular  momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

H_o =r x mv=rxL

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =

MO, where MO is the moment of the force F about point O. The equation expressing the rate of change  of angular momentum is this one:

MO = H˙ O

Principle of Angular Impulse and Momentum

The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular  momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

\int_{t_1}^{t_2}M_O dt = \int_{t_1}^{t_2}H_O dt=H_0t2 -H_0t1

Solution to the problem

For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is I_o =mK^2_o =30kg(0.125m)^2 =0.46875 kgm^2".

If we analyze the staritning point we see that the initial velocity can be founded like this:

v_o =\omega r_{OIC}=\omega (0.15m)

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

H_Ai +\sum \int_{t_i}^{t_f} M_A dt =H_Af

0+\sum \int_{0}^{4} 20t (0.15m) dt =0.46875 \omega + 30kg[\omega(0.15m)](0.15m)

And if we integrate the left part and we simplify the right part we have

1.5(4^2)-1.5(0^2) = 0.46875\omega +0.675\omega=1.14375\omega

And if we solve for \omega we got:

\omega =\frac{24}{1.14375}=20.983\frac{rad}{s}

8 0
3 years ago
Turn on your____
storchak [24]

Answer:

b

Explanation:

5 0
3 years ago
Read 2 more answers
A light bar AD is suspended from a cable BE and supports a 20-kg block at C. The ends A and D of the bar are in contact with fri
babymother [125]

Answer:

Tension in cable BE= 196.2 N

Reactions A and D both are  73.575 N

Explanation:

The free body diagram is as attached sketch. At equilibrium, sum of forces along y axis will be 0 hence

T_{BE}-W=0 hence

T_{BE}=W=20*9.81=196.2 N

Therefore, tension in the cable, T_{BE}=196.2 N

Taking moments about point A, with clockwise moments as positive while anticlockwise moments as negative then

196.2\times 0.125- 196.2\times 0.2+ D_x\times 0.2=0

24.525-39.24+0.2D_x=0

D_x=73.575 N

Similarly,

A_x-D_y=0

A_x=73.575 N

Therefore, both reactions at A and D are 73.575 N

7 0
3 years ago
The inlet and exhaust flow processes are not included in the analysis of the Otto cycle. How do these processes affect the Otto
lara31 [8.8K]

Answer:

Suction and exhaust processes do not affect the performance of Otto cycle.

Explanation:

Step1

Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.

Step2

Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.

Step3

The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:

Process 0-1 is suction process and process 1-0 is exhaust process.

7 0
3 years ago
PLEASE QUICK!!! what phrase describes an ad hominem fallacy?
Igoryamba

Answer:

personal attack

Explanation:

it is personal attack

5 0
3 years ago
Other questions:
  • What can happen to you if you are in a crash and not wearing a seat belt?<br> Explain.
    13·2 answers
  • The engine of a 2000kg car has a power rating of 75kW. How long would it take (seconds) to accelerate from rest to 100 km/hr at
    10·1 answer
  • Module 42 Review and Assessment
    7·1 answer
  • It is the tool used to measure the amount of electric current​
    6·2 answers
  • Which excerpt from "The Chrysanthemums' best reveals that Elisa is proud of her
    6·1 answer
  • g A thin-walled pressure vessel 6-cm thick originally contained a small semicircular flaw (radius 0.50-cm) located at the inner
    5·1 answer
  • What should you use to keep battery terminals from corroding
    12·1 answer
  • NO SCAMS
    9·2 answers
  • A sprinter reaches his maximum speed in 2.5sec from rest with constant acceleration. He then maintains that speed and finishes t
    15·1 answer
  • Can someone help me LA project pls :((
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!