The elastic potential energy stored in the stretched spring is 1 J.
<h3>What is Hooke's law?</h3>
Hooke's law states that; provided the elastic limit is not exceeded, the extension of the spring is directly proportional to the force on the spring.
Given that;
Force on the spring = 350 Newton
Distance stretched = 7 centimeters or 0.07 m
Hence;
F = ke
k = F/e = 350 Newton/0.07 m = 5000 N/m
Work done in stretching a spring = 1/2ke^2
= 0.5 × 5000 × (2 × 10^-2)^2 =1 J
Learn more about elastic potential energy: brainly.com/question/156316
Answer: See explanation
Explanation:
Inertia is the force that keeps an object at rest. Inertia is referred to as the property which results in it continuing in the state of rest that it is unless there's an external force that acts upon it.
Inertia keeps objects and things in place and it holds the universe together. When there's no force that's acting in an object, such object will continue to move in a straight line and also at a constant speed.
The tension in the rope B is determined as 10.9 N.
<h3>Vertical angle of cable B</h3>
tanθ = (6 - 4)/(5 - 0)
tan θ = (2)/(5)
tan θ = 0.4
θ = arc tan(0.4) = 21.8 ⁰
<h3>Angle between B and C</h3>
θ = 21.8 ⁰ + 21.8 ⁰ = 43.6⁰
Apply cosine rule to determine the tension in rope B;
A² = B² + C² - 2BC(cos A)
B = C
A² = B² + B² - (2B²)(cos A)
A² = 2B² - 2B²(cos 43.6)
A² = 0.55B²
B² = A²/0.55
B² = 65.3/0.55
B² = 118.73
B = √(118.73)
B = 10.9 N
Thus, the tension in the rope B is determined as 10.9 N.
Learn more about tension here: brainly.com/question/24994188
#SPJ1
Answer:
Calcium bromide is the name for compounds with the chemical formula CaBr2(H2O)x.