I think it might be the last answer.... Or the second one. Yeah i think it’s the second one
Answer:
<h2>2.44 L</h2>
Explanation:
The volume can be used by using the formula for Boyle's law which is

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we're finding the final volume

We have

We have the final answer as
<h3>2.44 L</h3>
Hope this helps you
Answer:
Explanation:
The formula of the reaction:
KClO₂ → KCl + O₂
To assign oxidation numbers, we have to obey some rules:
- Elements in an uncombined state or one whose atoms combine with one another to form molecules have an oxidation number of zero.
- The charge on simple ions signifies their oxidation number.
- The algebraic sum of all the oxidation number of all atoms in a neutral compound is zero. For radicals with charges, their oxidation number is the charge.
The oxidation number of K in KClO₂:
K + (-1) + 2(-2) = 0
K-5 = 0
K = +5
The oxidation number of K in KCl:
K + (-1) = 0
K = +1
The oxidation number Cl in KClO₂ is -1
For Cl in KCl, the oxidation number is -1
For O in KClO₂, the oxidation number is (2 x -2) = -4
For O in O₂, the oxidation number is 0
K moves from an oxidation state of +5 to +1. This is a gain of electrons and K has undergone reduction. We then say K is reduced.
O moves from an oxidation state of -4 to 0. This is a loss of electrons and O has undergone oxidation. We say O is oxidized.
Answer:
2NO(g) + O2(g) --> 2NO2(g)
now 400 ml of NO × 2 mol of NO2/2 mol of NO
= 400 ml of NO2
now 500 ml of O2 × 2 mol of NO2/1 mol of O2
= 1000 ml of NO2
now 400 ml of NO2 × 1 mol of O2/2 mol of NO
= 200 ml
subtract that from 500 ml of total i.e. 500-200 =300 ml
The total volume of the reaction mixture is 1000 ml -300ml = 700 ml