Answer:
Explanation:
Volume of lead object = volume of aluminium object = V
mass of lead object > mass of aluminium object
When both the objects immersed in water, the buoyant force acting on both the objects.
Buoyant force = Volume immersed x density of water x gravity
As the volume of both the objects is same, so the buoyant force acting on both the objects is same.
So, weight in air of lead object is more than the weight in air of aluminium object.
Answer:
The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Explanation:
Under the assumption that no external forces are exerted on both the small object and the big object, whose situation is described by the Principle of Momentum Conservation:
(1)
Where:
,
- Initial and final momemtums of the small object, measured in kilogram-meters per second.
,
- Initial and final momentums of the big object, measured in kilogram-meters per second.
If we know that
,
and
, then the final momentum of the big object is:


The magnitude of the large object's momentum change is:


The magnitude of the large object's momentum change is 3 kilogram-meters per second.
Answer:
17. h = l − l cos θ
18. 1.40 m
Explanation:
Let's call d the height of the triangle. We can then say:
h = l − d
Using trig, we can write d in terms of l and θ:
d = l cos θ
h = l − l cos θ
If l = 6 m and l cos θ = 40°:
h = 6 − 6 cos 40
h ≈ 1.40
It would be a really bad idea to eat the snow because you obviously are trying to stay warm right? Well, the best thing to do is melt the snow. However, the process of melting the snow would have a few complications as well. But yes, the latter idea (drinking the snow) is a better idea (not the best).
The correct answer is A, electrons enter orbitals of lowest energy first. The Aufbau principle states that electrons orbiting atoms fill the lowest energy levels available before filling higher levels. Following this, molecules can go into the most stable electron configuration.