Answer:
B
Explanation:
it's converts electrical energy to mechanical energy.
Gravity decreases your kinetic energy when you are driving uphill since the direction of motion is opposite for both. Driving uphill is force going upward while gravity pulls object down. When it is going downhill, the car tends to go faster since the gravity helps the object to go down by adding another value to the total acceleration of the motion of the object. Using the forces of balance, an object going up tends to become heavier while object going down tends to become lighter because of the gravity factor. Another analogy is the motion of elevators going up and down that incurs effects to your weiight.
Answer:
3 fans per 15 A circuit
Explanation:
From the question and the data given, the light load let fan would have been
(60 * 4)/120 = 240/120 = 2 A.
Next, we add the current of the fan motor to it, so,
2 A + 1.8 A = 3.8 A.
Since the devices are continuos duty and the circuit current must be limited to 80%, then the Breaker load max would be
0.8 * 15 A = 12 A.
Now, we can get the number if fans, which will be
12 A/ 3.8 A = 3.16 fans, or approximately, 3 fans per 15 A circuit.
1. Cenozoic ERA
2. Mesozoic ERA
3. Paleozoic ERA
There's a short handy formula for that.
If the object is just dropped and not tossed, and it's not affected by air resistance on the way down, then the distance it falls in T seconds is
D = (1/2) (gravity) (T²)
For this problem . . .
176.4 m = (1/2) (9.8 m/s²) (T²)
Divide each side by (4.9 m/s²) :
T² = (176.4 m) / (4.9 m/s²)
T² = (36 s²)
Take the square root of each side:
<em>T = 6 seconds</em>