Answer:
time to fall is 3.914 seconds
Explanation:
given data
half distance time = 1.50 s
to find out
find the total time of its fall
solution
we consider here s is total distance
so equation of motion for distance
s = ut + 0.5 × at² .........1
here s is distance and u is initial speed that is 0 and a is acceleration due to gravity = 9.8 and t is time
so for last 1.5 sec distance is 0.5 of its distance so equation will be
0.5 s = 0 + 0.5 × (9.8) × ( t - 1.5)² ........................1
and
velocity will be
v = u + at
so velocity v = 0+ 9.8(t-1.5) ..................2
so first we find time
0.5 × (9.8) × ( t - 1.5)² = 9.8(t-1.5) + 0.5 ( 9.8)
solve and we get t
t = 3.37 s
so time to fall is 3.914 seconds
<span>The correct answer is blue. If you look at a luminosity star chart, called the Hertzsprung Russell Diagram, you will see the measurement of luminosity on the left side, and you will see a curve of stars with different colors (which correlate to the colors of the stars). Look for 30 on the luminosity measurement (look between 1 and 100). Then, move horizontally across the diagram until you hit the stars, whose color will be blue. Thus, blue is the answer.</span>
Answer: Work Done would remain same.
Let us assume that the velocity is constant while taking the load up the inclined plane. Then, the kinetic energy would remain the same. This is because kinetic energy is dependent on velocity
. If that is constant, the kinetic energy would remain same. The potential energy is dependent on the height
. If the height is changed, then potential energy varies. In the question, it is mentioned that without changing the height, the length of the inclined plane is changed. Therefore, the potential energy would be same as before.
We know, work done is equal to potential energy plus kinetic energy. Since there is no change in any of these, the required work done would not change.
2.4 meters per second
I hope this helps
The correct answer is A. 250N
Work is a product of force and distance.
That is, work done=force×distance
Therefore substituting for the values in the question:
500J=force×2m
force= 500Nm/2m=250N
another unit for work done is Nm as force as the SI unit of force is newtons and distance in meters