Answer:
F = 69.5 [N]
Explanation:
We must remember that the friction force is defined as the product of the normal force by the coefficient of friction, and it can be calculated by the following expression.

where:
N = normal force [N]
miu = friction coefficient
f = friction force = 22 [N]
Now we must calculate the force exerted by means of Newton's second law which tells us that the sum of forces on a body is equal to the product of mass by acceleration.

where:
F = force exerted [N]
f = friction force [N]
m = mass = 95 [kg]
a = acceleration = 0.5 [m/s²]
Now replacing:
![F - 22 = 95*0.5\\F = 47.5 + 22\\F = 69.5 [N]](https://tex.z-dn.net/?f=F%20-%2022%20%3D%2095%2A0.5%5C%5CF%20%3D%2047.5%20%2B%2022%5C%5CF%20%3D%2069.5%20%5BN%5D)
<span>Variations in Earth-Sun orbital relationships.</span>
To solve this problem it is necessary to apply the concepts related to mutual inductance in a solenoid.
This definition is described in the following equation as,

Where,
permeability of free space
Number of turns in solenoid 1
Number of turns in solenoid 2
Cross sectional area of solenoid
l = Length of the solenoid
Part A )
Our values are given as,





Substituting,



PART B) Considering that many of the variables remain unchanged in the second solenoid, such as the increase in the radius or magnetic field, we can conclude that mutual inducantia will appear the same.
Volume=mass/density
volume=455.6/19.3
volume=23.6 mL