I would say when an atom has its valence electron shell filled like a noble gas has, it is not easily changed.
I’m not entirely sure of what you’re asking, but if you’re talking about bonding then it would be an ionic bond that is not easily changed.
Answer:
205 K (to 3 significant figures)
Explanation:
Assuming that 4 moles of the gas behaves like an ideal gas and obey the kinetic molecular theory.
Let's apply the ideal gas law, pV= nRT.
Here p denotes the pressure of the gas, V is for volume, n is the number of moles of the gas, R is the universal gas constant and T is the temperature.
Substitute the given information into the equation:
5.6 atm ×12 L= 4 mol ×R ×T
Since pressure is in atm and volume is in L, we can use R= 0.08206 L atm K⁻¹ mol⁻¹.
5.6 atm ×12 L= 4 mol ×0.08206 L atm K⁻¹ mol⁻¹ ×T
T= 67.2 ÷0.32824
T= 204.73 (5 s.f.)
T= 205 K (3 s.f.)
-Just look up “H2O lewis structure
-1.5
-Don’t know the VSEPR
-Polar Covalent
-Again, don’t know VSEPR
-Just look up H2O molecule
Answer:
A. The partial pressure for CH4 = 0.0925atm
B. The partial pressure for C2H6 = 0.925atm
C. The partial pressure for C3H8 = 0.346atm
D. The partial pressure for C4H10 = 0.115atm
Explanation:
Total pressure = 1.48atm
Total mole = 0.4+4+1.5+0.5=6.4
A. Mole fraction of CH4 = 0.4/6.4 = 0.0625
The partial pressure for CH4 = 0.0625 x 1.48 = 0.0925atm
B. Mole fraction of C2H6 = 4/6.4 = 0.625
The partial pressure for C2H6 = 0.625 x 1.48 = 0.925atm
C. Mole fraction of C3H8 = 1.5/6.4 = 0.234
The partial pressure for C3H8 = 0.234 x 1.48 = 0.346atm
D. Mole fraction of C4H10 = 0.5/6.4 = 0.078
The partial pressure for C4H10 = 0.078 x 1.48 = 0.115atm