<span>5.5×10−2M in calcium chloride and 8.0×10−2M in magnesium nitrate.
What mass of sodium phosphate must be added to 1.5L of this solution to completely eliminate the hard water ion
1) Content of Ca (2+) ions
Calcium chloride = CaCl2
Ionization equation: CaCl2 ---> Ca (2+) + 2 Cl (-)
=> Molar ratios: 1 mol of CaCl2 : 1 mol Ca(2+) : 2 mol Cl(-)
Calculate the number of moles of CaCl2 in 1.5 liters of 5.5 * 10^-2 M solution
M = n / V => n = M*V = 5.5 * 10^ -2 M * 1.5 l = 0.0825 mol CaCl2
=> 0.0825 mol Ca(2+)
2) Number of phosphate ions needed to react with 0.0825 mol Ca(2+)
formula of phospahte ion: PO4 (3-)
molar ratio: 2PO4(3-) + 3Ca(2+) = Ca3 (PO4)2
Proportion: 2 mol PO4(3-) / 3 mol Ca(2+) = x / 0.0825 mol Ca(2+)
=> x = 0.0825 coml Ca(2+) * 2 mol PO4(3-) / 3 mol Ca(2+) = 0.055 mol PO4(3-)
3) Content of Mg(2+) ions
Ionization equation: Mg (NO3)2 ----> Mg(2+) + 2 NO3 (-)
Molar ratios: 1 mol Mg(NO3)2 : 1 mol Mg(2+) + 2 mol NO3(-)
number of moles of Mg(NO3)2 in 1.5 liter of 8.0 * 10^-2 M solution
n = M * V = 8.0 * 10^ -2 M * 1.5 liter = 0.12 moles Mg(NO3)2
ions of Mg(2+) = 0.12 mol Mg(NO3)2 * 1 mol Mg(2+) / mol Mg(NO3)2 = 0.12 mol Mg(2+)
4) Number of phosphate ions needed to react with 0.12 mol Mg(2+)
2PO4(3-) + 3Mg(2+) = Mg3(PO4)2
=> 2 mol PO4(3-) / 3 mol Mg(2+) = x / 0.12 mol Mg(2+)
=> x = 0.12 * 2/3 mol PO4(3-) = 0.16 mol PO4(3-)
5) Total number of moles of PO4(3-)
0.055 mol + 0.16 mol = 0.215 mol
6) Sodium phosphate
Sodium phosphate = Na3(PO4)
Na3PO4 ---> 3Na(+) + PO4(3-)
=> 1 mol Na3PO4 : 1 mol PO4(3-)
=> 0.215 mol PO4(3-) : 0.215 mol Na3PO4
mass in grams = number of moles * molar mass
molar mass of Na3 PO4 = 3*23 g/mol + 31 g/mol + 4*16 g/mol = 164 g/mol
=> mass in grams = 0.215 mol * 164 g/mol = 35.26 g
Answer: 35.26 g of sodium phosphate
</span>
Answer:
The first energy level is closest to the nucleus. The second energy level is a little farther away than the first. ... The electrons in the energy level farthest from the nucleus are called valence electrons. Atoms in the same column (group) in the periodic table have the same number of valence electrons.
Explanation:
Reactivity - Reactivity refers to how likely or vigorously an atom is to react with other substances. This is usually determined by how easily electrons can be removed (ionization energy) and how badly they want to take other atom's electrons (electronegativity) because it is the transfer/interaction of electrons that is the basis of chemical reactions.
Metals
Period - reactivity decreases as you go from left to right across a period.
Group - reactivity increases as you go down a group
Why? The farther to the left and down the periodic chart you go, the easier it is for electrons to be given or taken away, resulting in higher reactivity.
Non-metals
Period - reactivity increases as you go from the left to the right across a period.
Group - reactivity decreases as you go down the group.
Why? The farther right and up you go on the periodic table, the higher the electronegativity, resulting in a more vigorous exchange of electron
The answer is B or the second answer
Answer:
Explanation:
From the information given:
Step 1:
Determine the partial pressure of each gas at total Volume (V) = 4.0 L
So, using:





![Total pressure= P [N_2] + P[Ar] \ \\ \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (0.525 + 1.7)Bar \\ \\ . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 2.225 \ Bar](https://tex.z-dn.net/?f=Total%20pressure%3D%20P%20%5BN_2%5D%20%2B%20P%5BAr%5D%20%5C%20%5C%5C%20%5C%5C%20.%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5C%20%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%3D%20%280.525%20%2B%201.7%29Bar%20%5C%5C%20%5C%5C%20.%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5C%20%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%3D%202.225%20%5C%20Bar)
Now, to determine the final pressure using different temperature; to also achieve this, we need to determine the initial moles of each gas.
According to Ideal gas Law.

For moles N₂:



For moles of Ar:





Finally;
The final pressure of the mixture is:

P = 2.217 atm
P ≅ 2.24 bar