Answer:
a. 4 m/s b. 0.2 V
Explanation:
a. Find the flow rate through a 3.00-cm-diameter pipe if the Hall voltage is 60.0 mV.
The hall voltage V = vBd where v = flow-rate, B = magnetic field strength = 0.500 T and d = diameter of pipe = 3.00 cm = 0.03 m
Since V = vBd
v = V/Bd given that V = 60.0 mV = 0.060 V, substituting the values of the other variables, we have
v = 0.060 V/(0.500 T × 0.03 m)
v = 0.060 V/(0.015 Tm)
v = 4 m/s
b. What would the Hall voltage be for the same flow rate through a 10.0-cm-diameter pipe with the same field applied?
Since the hall voltage, V = vBd and v = flow-rate = 4 m/s, B = magnetic field strength = 0.500 T and d' = diameter of pipe = 10.0 cm = 0.10 m
Substituting the variables into the equation, we have
V = vBd
V = 4 m/s × 0.500 T × 0.10 m
V = 0.2 V
Answer:
states that the rate of diffusion of gases is inversely proportional to their square roots
Since weight is the force an object is exerting on another object, and the formula to calculate force is Force = Mass * Acceleration, the answer to your question is 196 N, since the mass of the cannonball times Earth's gravitational pull equals 196 N.
Answer:
430.
Explanation:
If we know that 0.5 is half of a whole number, then we can simply understand that we need to 215 x 2 to get our answer.
OK. Thank you. That's an impulse of 200 Newton-sec to the left,
telling us that the cart's leftward momentum increases by 200 kg-m/s
(or its rightward momentum decreases by that amount).
Did you have a question to ask ?