1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
atroni [7]
3 years ago
10

A 0.210-kg block along a horizontal track has a speed of 1.70 m/s immediately before colliding with a light spring of force cons

tant 4.50 N/m located at the end of the track.
(a) What is the spring's maximum compression if the track is frictionless
(b) If the track is not frictionless, would the spring's maximum compression be greater than, less than, or equal to the value obtained in part (a)?greater lessequal
Physics
1 answer:
Natalija [7]3 years ago
3 0

Answer

given,

mass of block = 0.21 Kg

speed = 1.70 m/s

spring constant = k = 4.50 N/m

using conservation of energy

a)           K.E  =  P.E

 \dfrac{1}{2}mv^2 = \dfrac{1}{2}kx^2

 \dfrac{1}{2}\times 0.21 \times 1.7^2 = \dfrac{1}{2}\times 4.5 \times x^2

 0.1348= x^2

        x = 0.367 m

b) if the track is not friction less the maximum compression will be same as the compression in the part a.

You might be interested in
What kind of weather is signaled by cumulus clouds
Novay_Z [31]
Cumulonimbus clouds are associated by severe weather. They are thunderstorm clouds that bring heavy rain, snow, hail, lightning and even tornadoes.
5 0
3 years ago
A star that is moving toward an observer has its visible light shifted toward which end of the spectrum? A. blue B. red C. yello
xxTIMURxx [149]
La D mijo es blanco por que al pasar con rapides el color se torna blanco


3 0
3 years ago
Read 2 more answers
A hollow cylinder that is rolling without slipping is given a velocity of 5.0 m/s and rolls up an incline to a vertical height o
inysia [295]

Answer:

The hollow cylinder rolled up the inclined plane by 1.91 m

Explanation:

From the principle of conservation of mechanical energy, total kinetic energy = total potential energy

M.E_T = \frac{1}{2}mv^2 + \frac{1}{2} I \omega^2 + mgh

The total energy at the bottom of the inclined plane = total energy at the top of the inclined plane.

\frac{1}{2}mv_i^2 + \frac{1}{2} I \omega_i^2 + mg(0) =  \frac{1}{2}mv_f^2 + \frac{1}{2} I \omega_f^2 + mgh

moment of inertia, I, of a hollow cylinder = ¹/₂mr²

substitute for I in the equation above;

\frac{1}{2}mv_i^2 + \frac{1}{2} (\frac{1}{2}mr^2  \omega_i^2) =  \frac{1}{2}mv_f^2 + \frac{1}{2} (\frac{1}{2}mr^2  \omega_f^2) + mgh\\\\ but \ v = r \omega\\\\\frac{1}{2}mv_i^2 + \frac{1}{2} (\frac{1}{2}m v_i^2  ) =  \frac{1}{2}mv_f^2 + \frac{1}{2} (\frac{1}{2}m v_f^2) + mgh\\\\\frac{1}{2}mv_i^2 +\frac{1}{4}mv_i^2 = \frac{1}{2}mv_f^2 +\frac{1}{4}mv_f^2 +mgh\\\\\frac{3}{4}mv_i^2 = \frac{3}{4}mv_f^2 +mgh\\\\mgh = \frac{3}{4}mv_i^2 -  \frac{3}{4}mv_f^2\\\\gh = \frac{3}{4}v_i^2 -  \frac{3}{4}v_f^2\\\\

h = \frac{3}{4g}(v_1^2 -v_f^2)

given;

v₁ = 5.0 m/s

vf = 0

g = 9.8 m/s²

h = \frac{3}{4g}(v_1^2 -v_f^2) =\frac{3}{4*9.8}(5^2 -0) = 1.91 \ m

Therefore, the hollow cylinder rolled up the inclined plane by 1.91 m

5 0
3 years ago
Convert 1erg into joule by dimensional method​
Valentin [98]

Answer:

1 * 10^-7 [J]

Explanation:

To solve this problem we must use dimensional analysis.

1 ergos [erg] is equal to 1 * 10^-7 Joules [J]

1[erg]*\frac{1*10^{-7} }{1}*[\frac{J}{erg} ] \\= 1*10^{-7}[J]

4 0
3 years ago
A runner begins from rest at the starting line and travles for 6.5 seconds, a runner reaches a speed of 13.4 m/s what is the run
Butoxors [25]

The acceleration of the runner in the given time is 2.06m/s².

Given the data in the question;

Since the runner begins from rest,

  • Initial velocity; u = 0
  • Final velocity; v = 13.4m/s
  • Time elapsed; t = 6.5s

Acceleration of the runner; a = \ ?

<h3>Velocity and Acceleration</h3>

Velocity is the speed at which an object moves in a particular direction.

Acceleration is simply the rate of change of the velocity of a particle or object with respect to time. Now, we can see the relationship from the First Equation of Motion

v = u + at

Where v is final velocity, u is initial velocity, a is acceleration and t is time elapsed.

To determine the acceleration of the runner, we substitute our given values into the equation above.

v = u + at\\\\13.4m/s = 0 + (a * 6.5s)\\\\13.4m/s = a * 6.5s\\\\a = \frac{13.4m/s}{6.5s}\\ \\a = 2.06m/s^2

Therefore, the acceleration of the runner in the given time is 2.06m/s².

Learn more about Equations of Motion: brainly.com/question/18486505

3 0
2 years ago
Other questions:
  • The distance between two slits is 1.50 *10-5 m. A beam of coherent light of wavelength 600 nm illuminates these slits, and the d
    8·1 answer
  • Table salt is blank mixed with other compunds
    6·1 answer
  • The image shows a roller coaster.
    10·1 answer
  • The energy transfer diagram represents the energy of a person diving into a pool.
    14·2 answers
  • Volcanologists and seismologist are specialzed in what
    12·2 answers
  • A 600kg car is moving at 5 m/s to the right and elastically collided with a stationary 900 kg car. What is the velocity of the 9
    8·1 answer
  • A car is driving down a highway at a speed of 65 miles per hour. To the nearest second, how long wili it take the car to drive 1
    13·1 answer
  • A tracking station on Earth observes a rocket move away at 0.370c. This rocket is designed to launch a projectile at 0.505c rela
    7·1 answer
  • Check cashing businesses do not require that an individual be an account holder; they will cash any valid check. True False
    6·2 answers
  • How do tornadoes form from thunderstorms when ____.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!