Trips/slips/falls are among the most common types of work related injuries and/or deaths.
<span>Let's convert the speed to m/s:
speed = (55 mph) (1609.3 m / mile) (1 hour / 3600 seconds)
speed = 24.59 m/s
Let's convert the mass to kilograms:
mass = (2135 lb) (0.45359 kg / lb)
mass = 968.4 kg
We can find the kinetic energy KE:
KE = (1/2) m v^2
KE = (1/2) (968.4 kg) (24.59 m/s)^2
KE = 292780 joules
The kinetic energy of the automobile is 292780 joules.</span>
Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.

Answer:


Explanation:
= Initial momentum of the pin = 13 kg m/s
= Initial momentum of the ball = 18 kg m/s
= Momentum of the ball after hit
= Angle ball makes with the horizontal after hitting the pin
= Angle the pin makes with the horizotal after getting hit by the ball
Momentum in the x direction

Momentum in the y direction


The pin's resultant velocity is 

The pin's resultant direction is
below the horizontal or to the right.