Answer:
3 820 885 N
Explanation:
Gravitational equation
F = G m1 m2 / r^2
G = gravitational constant = 6.6713 x 10^-11 m^3/kg-s^2
F = 6.6713 x 10^-11 * 4.41 x 10^5 * 5.97 x 10^24 / ( 6.78x 10^6)^2
= 3820885 .3 N
Given
Car 1
m1 = 1300 kg
v1 = 20 m/s
m2 = 900 kg
v2 = -15 m/s
(Negative sign shows that direction of car 2 is opposite to car 1)
Procedure
As per the conservation of linear momentum, "The total momentum of the system before the collision must be equal to the total momentum after the collision". And this applies to the perfectly inelastic collision as well. Then the expression is,

Thus, we can conclude that the speed and direction of the cars after the impact is 5.68 m/s towards the first car.
Answer:
32.1 N Please Give Brainliest
Explanation:
force = mass x acceleration
An opera singer breaks a thin glass with only the use of her high frequency voice
Answer:
same 0.81m
Explanation:
in this problem if we assume there no resistance of any sort. and we apply the energy conservation
change in Potential energy = change in kinetic energy
mgh = 0.5mv^2
gh = 0.5v^2
the above relation suggests that the speed at the bottom is only depending on the height it is released from not on the shape, mass or radius.
so at the bottom
put h = 0.81m
9.81 * 0.81 * 2 = v^2
v=3.99 m/s
both CYLINDER and SPHERE will have same velocity at the bottom if released from the same height irrespective of shape and size