Answer:
α=0.625rad/s^2
v=340m/s
w=10rad/s
θ=320rad
Explanation:
Constant angular acceleration = ∆w/∆t
angular acceleration = 20/32
α=0.625rad/s^2
Linear velocity v=wr
v = 20×17= 340m/s
Average angular velocity
w0+w1/2
w= 0+20/2
w= 20/2
w=10rad/s
What angle did it rotate with
θ=wt
θ= 10×32
=320rad
Explanation:
gravitational potential energy at the top of the hill, which transforms into kinetic energy as he moves bottom of the hill
that's mean potential energy transfoms into kinetic energy
Answer:
distance = 33.124 meters
Explanation:
To solve this question, we will use one of the equations of motion which is:
s = ut + 0.5a * t^2
where:
s is the distance that we want to get
u is the initial velocity = 0
a is the acceleration due to gravity = 9.8 m/sec^2
t is the time = 2.6 sec
Substitute with the givens in the equation to get the distance as follows:
s = ut + 0.5a * t^2
s = (0)(2.6) + 0.5(9.8)(2.6)^2
s = 33.124 meters
Hope this helps :)
An ice cube causes hot coffee to become cool because the amount of coldness contrasts the hot coffee to make it a little cooler
Old temperature = 283 K.
New temp = 323 K.
(323/283) x (325 kPa) = 371 kPa.