Your mass wouldn’t change, but your weight would. Weight depends on the force of gravity however mass does not. When you land on the moon, your mass is the same as it was on the earth but weight will drop
Answer:
Explanation:
Use the one-dimensional equation
Δx =
where delta x is the displacement of the object, v0 is the velocity of the object, a is the pull of gravity, and t is the time in seconds. That's our unknown.
Δx = -2 (negative because where it ends up is lower than the point at which it started),
, and
a = -9.8
Filling in:
and simplified a bit:

this should look hauntingly familiar (a quadratic, which is parabolic motion...very important in physics!!). We begin by getting everything on one side of the equals sign and solving for t by factoring:
(the 0 is also indicative of the object landing on the ground! Isn't this a beautiful thing, how it all just works so perfectly together?)
When you factor this however your math/physics teacher has you factoring you will get that
t = 1.3 sec and t = -.31 sec
Since we all know that time can NEVER be negative, it takes the ball 1.3 sec to hit the ground from a height of 2 m if it is rolling off the shelf at 5 m/s.
Answer:
Explanation:
For sound level in decibel scale the relation is
dB = 10 log I / I₀ where I₀ = 10⁻¹² and I is intensity of sound whose decibel scale is to be calculated .
Putting the given values
61 = 10 log I / 10⁻¹²
log I / 10⁻¹² = 6.1
I = 10⁻¹² x 10⁶°¹

intensity of sound of 5 persons


= 10log 5 x 10⁶°¹
= 10( 6.1 + log 5 )
= 67.98
sound level will be 67.98 dB .
Answer:
The time taken by the brick to hit the ground, t = 0.84 s
Explanation:
Given that,
A brick falls from a height, h = 3.42 m
The initial velocity of the brick is zero.
Since the brick is under free-falling. The time equation of a free-falling body when the displacement is given is
t = 
where,
h - height from surface in meters
g - acceleration due to gravity
on substituting the values in the above equation,
t = 
= 0.84 s
Hence, time taken by the brick to hit the ground is t = 0.84 s
The amplitude of the red colored wave is 1 unit and the amplitude of the red colored wave is 2.1 unit.
<h3>
What is amplitude of a wave?</h3>
The amplitude of a wave is the maximum displacement of the wave. It can also be described at the maximum upward displacement of a wave curve.
<h3>Amplitude of the red colored wave</h3>
From the graph, the amplitude of the red colored wave is 1 unit.
<h3>Amplitude of the blue colored wave</h3>
From the graph, the amplitude of the red colored wave is 2.1 unit.
Thus, the amplitude of the red colored wave is 1 unit and the amplitude of the red colored wave is 2.1 unit.
Learn more about amplitude here: brainly.com/question/3613222
#SPJ1