Answer:
student attach a save block to a horizontal spring so that the block spring system will oscillator with the block spring system released from rest horizontal position that is not the systems equilibrium position well this question regards about the energy used the answer may be 0.73 Joel ok you just try it ok verified
Explanation:
apply applied the potential energy value mean the formula MGH write it means what mass into gravitation in to height
The velocity of the ferry relative to the current is 4.5 m/s.
<h3>Relative velocity</h3>
- Relative velocity is the velocity of a body as observed from the reference point of another body either stationary or in motion.
Since the river is flowing parallel to the shore and the ferry is moving perpendicular to the shore, their velocities are at right angles to each other.
The two velocities form a right angled-triangle of sides 2, 4 and a hypotenuse which gives the relative velocity of the ferry to the current.
Using Pythagoras rule:
- Let c be the hypotenuse
- a = velocity of the ferry, and
- b = the velocity of the current, and
c² = 4² + 2²
c² = 16 + 4
c = 20
c = √20
c = 4.47 m/s
c ≈ 4.5 m/s
Therefore, the velocity of the ferry relative to the current is 4.5 m/s.
Learn more about relative velocity and Pythagoras rule at: brainly.com/question/25617868
Answer:
2.815 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


Time taken with the acceleration is 94.25 seconds
Time = Distance / Speed

Difference in time = 97.065-94.25 = 2.815 seconds
Answer:
The height (in m) above the floor of the top and bottom of the smallest mirror in which he can see both the top of his head and his feet is;
1.835 m and 0.88 m.
Explanation:
Here we have the total height of the man as
1.76 + 0.15 = 1.91 m
The mirror is positioned such that the person can see both the top of his head and his feet
We have the eyes are 0.15 m below the top of the head, therefore by the law of reflection, the incident and reflected angle must be equal.
Hence, the light from the top of his head and then reflected to his eyes forms a isosceles triangle, with the base being the distance of the eye to the top of his head and the top of the triangle is on the mirror.
The height of the mirror is then
1.91 - 0.15/2 = 1.835 m
Similarly, the distance from the eye to the feet is 1.76, therefore, the base of the mirror is positioned at 1.76/2 or 0.88 m above the ground.