Explanation:
click the link you can get answer of the question
Answer:

Explanation:
We were told to calculate the speed of the ball,
Given speed of sound as 340 m
And we know that the sound of the ball hitting the pins is at 2.80 s after the ball is released from his hands.
Speed of ball = distance traveled/(time of hearing - time the sound travels).
Speed= S/t
Where S= distance traveled
t= time of hearing - time the sound travels
time=time for ball to roll+timefor sound to come back.
time of sound=16.5/340
=0.048529secs
solving for speedof ball
Then,Speed of ball = distance traveled/(time of hearing - time the sound travels).
=16.5/(2.80-0.048529) m/s = 5.997m/s
Therefore, the speed of the ball is
5.997m/s
Answer:
7.55 km/s
Explanation:
The force of gravity between the Earth and the Hubble Telescope corresponds to the centripetal force that keeps the telescope in uniform circular motion around the Earth:

where
is the gravitational constant
is the mass of the telescope
is the mass of the Earth
is the distance between the telescope and the Earth's centre (given by the sum of the Earth's radius, r, and the telescope altitude, h)
v = ? is the orbital velocity of the Hubble telescope
Re-arranging the equation and substituting numbers, we find the orbital velocity:

Answer:
earth's shadow covering the moon,thats lunar eclipse
Answer:
0.0319 m³
Explanation:
Use ideal gas law:
PV = nRT
where P is pressure, V is volume, n is amount of gas, R is the gas constant, and T is temperature.
Since P, n, and R are held constant:
n₁ R / P₁ = n₂ R₂ / P₂
Which means:
V₁ / T₁ = V₂ / T₂
Plugging in:
0.0279 m³ / 280 K = V / 320 K
V = 0.0319 m³