1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly [62]
3 years ago
8

Consider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 k

m, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.
Required:
a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?
b. Find the average rate of CO emissions during this two-hour period.
c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pm
Engineering
1 answer:
In-s [12.5K]3 years ago
3 0

Consider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 km, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.

Required:

a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?

b. Find the average rate of CO emissions during this two-hour period.

c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pmConsider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 km, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.

Required:

a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?

b. Find the average rate of CO emissions during this two-hour period.

c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pmConsider an area-source box model for air pollution above a peninsula of land. The length of the box is 15 km, its width is 80 km, and a radiation inversion restricts mixing to 15 m. Wind is blowing clean air into the long dimension of the box at 0.5 m/s. On average, there are 250,000 vehicles on the road, each being driven 40 km in 2 hours and each emitting 4 g/km of CO.

Required:

a. Estimate the steady-state concentration of CO in the air. Should the city be designated as "nonattainment" (i.e., steady-state concentration is over the NAAQS standard)?

b. Find the average rate of CO emissions during this two-hour period.

c. If the windspeed is zero, use the formula to derive relationship between CO and time and use it to find the CO over the peninsula at 6pm

<em><u>p</u></em><em><u>lease</u></em><em><u> mark</u></em><em><u> me</u></em><em><u> as</u></em><em><u> brainliest</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

<em><u>f</u></em><em><u>ollow</u></em><em><u> me</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>,</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>

You might be interested in
Pedro holds a heavy science book over his head for 10 minutes. Petro is doing work during that time. True or False
algol [13]

Answer:

True because he is working his arms to lift and hold the weight

Explanation:

4 0
3 years ago
The minimum safe working distance from exposed electrical conductors
SVEN [57.7K]

Answer:

b

Explanation:

4 0
3 years ago
After replacing a vacuum booster, the brakes lock up on a road test. Technician A says there is air trapped inside the brake lin
vitfil [10]

Answer:

Technician B

Explanation:

The brakes can lockup due to the following reasons

1) Overheating break systems

2) Use of wrong brake fluid

3) Broken or damaged drum brake backing plates, rotors, or calipers

4) A defective ABS part, or a defective parking mechanism or proportioning valve

5) Brake wheel cylinders, worn off

6) Misaligned power brake booster component

5 0
3 years ago
Anaircraft component is fabricated from an aluminum alloy that has a plane-strain fracture toughness of 40 MPa 1/2.It has been d
navik [9.2K]

Answer:

Yes, fracture will occur since toughness (42.4 MPa) is greater than the toughness of the material, 40MPa

Explanation:

Given

Toughness, k = 40Mpa

Stress, σ = 300Mpa

Length, l = 4mm = 4 * 10^-3m

Under which fracture occurred (i.e., σ= 300 MPa and 2a= 4.0 mm), first we solve for parameter Y (The dimensionless parameter)

Y = k/(σπ√a)

Where a = ½ of the length in metres

Y = 40/(300 * π * √(4/2 * 10^-3))

Y = 1.68 ---- Approximated

To check if fracture will occur of not; we apply the same formula.

Y = k/(σπ√a)

Then we solve for k, where

σ = 260Mpa and a = ½ * 6 * 10^-3

So,.we have

1.68 = k/(260 * π * √(6*10^-3)/2)

k = 1.68 * (260 * π * (6*10^-3)/2)

k = 42.4 MPa --- Approximately

Therefore, fracture will occur since toughness (42.4 MPa) is greater than the toughness of the material, 40 MPa

7 0
3 years ago
Read 2 more answers
What is the potiental energy of a 3 kg ball that is on the ground
Llana [10]

Answer:

147.15

Explanation:

147.15 is the answer

8 0
2 years ago
Other questions:
  • A heat engine is coupled with a dynamometer. The length of the load arm is 900 mm. The spring balance reading is 16. Applied wei
    11·1 answer
  • A part has been tested to have Sut = 530 MPa, f = 0.9, and a fully corrected Se = 210 MPa. The design requirements call for the
    10·1 answer
  • Describe ICP/OES in detail.
    6·2 answers
  • A 0.50 m3 drum was filled with 0.49 m3 of liquid water at 25oC and the remaining volume was water vapor without any air. The dru
    15·1 answer
  • 1. Given: R= 25 , E = 100 V<br> Solve for I
    5·1 answer
  • Oleg is using a multimeter to test the circuit branch you just installed. After turning off the current to the circuit at the se
    5·1 answer
  • A 1/4" nut driver with a 1.52 inch diameter handle is used to install a 14" 6 UNC
    13·1 answer
  • How is an orthographic drawing similar to or different from an isometric drawing?
    14·2 answers
  • Hey friends.... ajao bat Kare ✌️✌️❤️​
    7·2 answers
  • Limited time only for christmas give yourself free 100 points Thats what im talking about
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!