1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ExtremeBDS [4]
3 years ago
5

Limited time only for christmas give yourself free 100 points Thats what im talking about

Engineering
2 answers:
valentinak56 [21]3 years ago
4 0

Answer:

Free points................

Explanation:

Thanks for the points.

murzikaleks [220]3 years ago
4 0
Ok thanks merry crymust
You might be interested in
It is known that the connecting rod AB exerts on the crank BCa 2.5-kN force directed down andto the left along the centerline of
monitta

Answer:

M_c = 61.6 Nm

Explanation:

Given:

F_a = 2.5 KN

Find:

Determine the moment of this force about C for the two casesshown.

Solution:

- Draw horizontal and vertical vectors at point A.

- Take moments about point C as follows:

                         M_c = F_a*( 42 / 150 ) *88

                         M_c = 2.5*( 42 / 150 ) *88

                         M_c = 61.6 Nm

- We see that the vertical component of force at point A passes through C.

Hence, its moment about C is zero.

6 0
3 years ago
A machine used to shred cardboard boxes for composting has a first cost of $10,000, an AOC of $7000 per year, a 3-year life, and
borishaifa [10]
Annual Payment where F is accumulated sum of amount, n is number of years and i is annual rate of interest. The standard notation equation is in the image since i can’t type it-
6 0
3 years ago
What process is used to remove collodal and dissolved organic matter in waste water ​
Juli2301 [7.4K]

Answer:

Aerobic biological treatment process

Explanation:

Aerobic biological treatment process in which micro-organisms, in the presence of oxygen, metabolize organic waste matter in the water, thereby producing more micro-organisms and inorganic waste matter like CO₂, NH₃ and H₂O.

3 0
3 years ago
A train consists of a 50 Mg engine and three cars, each having a mass of 30 Mg . If it takes 75 s for the train to increase its
ohaa [14]

Answer:

T = 15 kN

F = 23.33 kN

Explanation:

Given the data in the question,

We apply the impulse momentum principle on the total system,

mv₁ + ∑\int\limits^{t2}_{t1} {Fx} \, dt = mv₂

we substitute

[50 + 3(30)]×10³ × 0 + FΔt = [50 + 3(30)]×10³ ×  ( 45 × 1000 / 3600 )  

F( 75 - 0 ) =  1.75 × 10⁶

The resultant frictional tractive force F is will then be;

F =  1.75 × 10⁶ / 75

F = 23333.33 N

F = 23.33 kN

Applying the impulse momentum principle on the three cars;

mv₁ + ∑\int\limits^{t2}_{t1} {Fx} \, dt = mv₂

[3(30)]×10³ × 0 + FΔt = [3(30)]×10³ ×  ( 45 × 1000 / 3600 )  

F(75-0) = 1.125 × 10⁶

The force T developed is then;

T =  1.125 × 10⁶ / 75

T = 15000 N

T = 15 kN

7 0
3 years ago
A thick aluminum block initially at 26.5°C is subjected to constant heat flux of 4000 W/m2 by an electric resistance heater whos
Yanka [14]

Given Information:

Initial temperature of aluminum block = 26.5°C

Heat flux = 4000 w/m²

Time = 2112 seconds

Time = 30 minutes = 30*60 = 1800 seconds

Required Information:

Rise in surface temperature = ?

Answer:

Rise in surface temperature = 8.6 °C after 2112 seconds

Rise in surface temperature = 8 °C after 30 minutes

Explanation:

The surface temperature of the aluminum block is given by

T_{surface} = T_{initial} + \frac{q}{k} \sqrt{\frac{4\alpha t}{\pi} }

Where q is the heat flux supplied to aluminum block, k is the conductivity of pure aluminum and α is the diffusivity of pure aluminum.

After t = 2112 sec:

T_{surface} = 26.5 + \frac{4000}{237} \sqrt{\frac{4(9.71\times 10^{-5}) (2112)}{\pi} }\\\\T_{surface} = 26.5 + \frac{4000}{237} (0.51098)\\\\T_{surface} = 26.5 + 8.6\\\\T_{surface} = 35.1\\\\

The rise in the surface temperature is

Rise = 35.1 - 26.5 = 8.6 °C

Therefore, the surface temperature of the block will rise by 8.6 °C after 2112 seconds.

After t = 30 mins:

T_{surface} = 26.5 + \frac{4000}{237} \sqrt{\frac{4(9.71\times 10^{-5}) (1800)}{\pi} }\\\\T_{surface} = 26.5 + \frac{4000}{237} (0.4717)\\\\T_{surface} = 26.5 + 7.96\\\\T_{surface} = 34.5\\\\

The rise in the surface temperature is

Rise = 34.5 - 26.5 = 8 °C

Therefore, the surface temperature of the block will rise by 8 °C after 30 minutes.

5 0
3 years ago
Other questions:
  • A food department is kept at -12 °C by a refrigerator in an environment at 30 °C. The total heat gain to the food department is
    8·1 answer
  • What are the causes of kickback on a table-saw?
    13·1 answer
  • The structure supports a distributed load of w. The limiting stress in rod (1) is 370 MPa, and the limiting stress in each pin i
    5·1 answer
  • Refectories are one of the types of ceramics that have low melting temperature. a)-True b)-False
    7·1 answer
  • Project 8:The Harris-Benedict equation estimates the number of calories your body needs to maintain your weight if you do no exe
    5·1 answer
  • An engineer is considering time of convergence in a new Layer 3 environment design. Which two attributes must be considered? (Ch
    15·1 answer
  • An ideal Diesel cycle has a compression ratio of 17 and a cutoff ratio of 1.3. Determine the maximum temperature of the air and
    10·1 answer
  • Your new team is working hard, but they are all less experienced than you and don't complete their tasks as quickly.What would y
    8·1 answer
  • Someone please please help me and explain!! I will give brainliest if right!!!
    9·2 answers
  • Describe how you would control employee exposure to excessive noise in a mining environment
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!