Answer:
Explanation:
——»To measure centimeters, we can use ruler.
- Use a ruler with the side marked either cm or mm. Align the edge of the object with the first centimeter line on the ruler, then find the length in whole centimeters, or the larger numbers on the ruler.
Answer:
6 m/s
Explanation:
12m / 2s = 6 m/s
Hope that's the answer you seek.
The speed of the wave created by Linh in the spring by moving the other end right and left with a frequency of 2 Hz is 1m/s.
<h3>How to calculate speed of a wave?</h3>
The speed of a wave can be calculated by using the following formula:
Speed = Wavelength x Frequency
According to this question, Linh creates waves in the spring by moving the other end right and left with a frequency of 2 Hz. If wave crests are 0.5 m apart, the speed can be calculated as follows:
speed = 2Hz × 0.5m
speed = 1m/s
Therefore, the speed of the wave created by Linh in the spring by moving the other end right and left with a frequency of 2 Hz is 1m/s.
Learn more about speed at: brainly.com/question/10715783
#SPJ1
Answer:
0 J
Explanation:
given,
mass of the ball = 5 kg
radius of the horizontal circle = 0.5 m
tension in the string = 10 N
Work done = ?
Work done by the tension in the circular path will be equal to zero.
This is because body moves in circular path, the centripetal force act along the radius of the circle and motion is right angle to the tension on the string.
so, work done = F s cos θ
θ = 90°,
work done = F s cos 90° ∵ cos 90° = 0
Work done = 0 J
Answer: The height above the release point is 2.96 meters.
Explanation:
The acceleration of the ball is the gravitational acceleration in the y axis.
A = (0, -9.8m/s^)
For the velocity we can integrate over time and get:
V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))
for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)
P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)
now, the time at wich the horizontal displacement is 4.22 m will be:
4.22m = 9.20*cos(69°)*t
t = (4.22/ 9.20*cos(69°)) = 1.28s
Now we evaluate the y-position in this time:
h = -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m
The height above the release point is 2.96 meters.