1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nata0808 [166]
3 years ago
5

An open container holds ice of mass 0.555 kg at a temperature of -16.6 ∘C . The mass of the container can be ignored. Heat is su

pplied to the container at the constant rate of 820 J/minute . The specific heat of ice to is 2100 J/kg⋅K and the heat of fusion for ice is 334×103J/kg. A. How much time passes before the ice starts to melt?
B. From the time when the heating begins, how much time does it take before the temperature rises above freezing?
Physics
1 answer:
s2008m [1.1K]3 years ago
8 0

Answer: A. 23.59 minutes.

              B. 249.65 minutes

Explanation: This question involves the concept of Latent Heat and specific heat capacities of water in solid phase.

<em>Latent heat </em><em>of fusion </em>is the total amount of heat rejected from the unit mass of water at 0 degree Celsius to convert completely into ice of 0 degree Celsius (and the heat required for vice-versa process).

<em>Specific heat capacity</em> of a substance is the amount of heat required by the unit mass of a substance to raise its temperature by 1 kelvin.

Here, <u>given that</u>:

  • mass of ice, m= 0.555 kg
  • temperature of ice, T= -16.6°C
  • rate of heat transfer, q=820 J.min^{-1}
  • specific heat of ice, c_{i}= 2100 J.kg^{-1}.K^{-1}
  • latent heat of fusion of ice, L_{i}=334\times10^{3}J.kg^{-1}

<u>Asked:</u>

1. Time require for the ice to start melting.

2. Time required to raise the temperature above freezing point.

Sol.: 1.

<u>We have the formula:</u>

Q=mc\Delta T

Using above equation we find the total heat required to bring the ice from -16.6°C to 0°C.

Q= 0.555\times2100\times16.6

Q= 19347.3 J

Now, we require 19347.3 joules of heat to bring the ice to 0°C  and then on further addition of heat it starts melting.

∴The time required before the ice starts to melt is the time required to bring the ice to 0°C.

t=\frac{Q}{q}

=\frac{19347.3}{820}

= 23.59 minutes.

Sol.: 2.

Next we need to find the time it takes before the temperature rises above freezing from the time when heating begins.

<em>Now comes the concept of Latent  heat into the play, the temperature does not starts rising for the ice as soon as it reaches at 0°C it takes significant amount of time to raise the temperature because the heat energy is being used to convert the phase of the water molecules from solid to liquid.</em>

From the above solution we have concluded that 23.59 minutes is required for the given ice to come to 0°C, now we need some extra amount of energy to convert this ice to liquid water of 0°C.

<u>We have the equation:</u> latent heat, Q_{L}= mL_{i}

Q_{L}= 0.555\times334\times10^{3}= 185370 J

<u>Now  the time required for supply of 185370 J:</u>

t=\frac{Q_{L}}{q}

t=\frac{185370}{820}

t= 226.06 minutes

∴ The time it takes before the temperature rises above freezing from the time when heating begins= 226.06 + 23.59

= 249.65 minutes

You might be interested in
How does muscle fatigue affect the amount of work that muscles can do?
Ganezh [65]

Answer:

by straining that muscle it can slow down the amount of muscle your supposed to get

Explanation:

6 0
3 years ago
Read 2 more answers
Determine the change in velocity of a car that starts at rest and has a final velocity of 20 miles per second North
Katen [24]

Answer: The change in velocity is 20mph

Explanation: The change in velocity is the difference between the final velocity and the initial velocity.

The initial velocity is 0 and the final velocity is 20mph.

Using the formula dV=Vf-Vi

dV=20-0

dV=20mph North

5 0
4 years ago
An object is projected from the ground with an upward speed of ų m/s has a speed of 23m/s when it is at a height of 5m above the
vovikov84 [41]

Answer:

25.08m/s

Explanation:

mgh1 + 0.5mv1² = mgh2 + 0.5mv2²

h1 = 0m

v1 = u

h2 = 5m

v2 = 23m/s

putting the values into the formula above;

m(10)(0) + 0.5m(u²) = m(10)(5) + 0.5m(23²)

0 + 0.5mu² = 50m + 264.5m

0.5mu² = 314.5m

dividing through by m

0.5u² = 314.5

u² = 629

u = <u>2</u><u>5</u><u>.</u><u>0</u><u>8</u><u>m</u><u>/</u><u>s</u>

<u>Theref</u><u>ore</u><u>,</u><u> </u><u>the</u><u> </u><u>init</u><u>ial</u><u> </u><u>speed</u><u> </u><u>"</u><u>u</u><u>"</u><u> </u><u>=</u><u> </u><u>2</u><u>5</u><u>m</u><u>/</u><u>s</u>

6 0
3 years ago
A. If an electron in a hydrogen atom has an energy of −6.06 × 10^−20 J, which Bohr orbit is it in?
Orlov [11]

Explanation:

yea because cheese and jdouchvehdjdjdbsjjs d d d d d d d d d d djxjxjx s djxbsbs zjxh d d d

3 0
4 years ago
A man holding a rock sits on a sled that is sliding across a frozen lake (negligible friction) with a speed of 0.550 m/s. The to
Arisa [49]

Answer: 0.5 m/s

Explanation:

Given

Speed of the sled, v = 0.55 m/s

Total mass, m = 96.5 kg

Mass of the rock, m1 = 0.3 kg

Speed of the rock, v1 = 17.5 m/s

To solve this, we would use the law of conservation of momentum

Momentum before throwing the rock: m*V = 96.5 kg * 0.550 m/s = 53.08 Ns

When the man throws the rock forward

rock:

m1 = 0.300 kg

V1 = 17.5 m/s, in the same direction of the sled with the man

m2 = 96.5 kg - 0.300 kg = 96.2 kg

v2 = ?

Law of conservation of momentum states that the momentum is equal before and after the throw.

momentum before throw = momentum after throw

53.08 = 0.300 * 17.5 + 96.2 * v2

53.08 = 5.25 + 96.2 * v2

v2 = [53.08 - 5.25 ] / 96.2

v2 = 47.83 / 96.2

v2 = 0.497 ~= 0.50 m/s

3 0
3 years ago
Other questions:
  • A 2.0-kg object is lifted vertically through 3.00 m by a 150-N force. How much work is done on the object by gravity during this
    9·2 answers
  • HELP, what are 2 chemical properties of Tungsten.
    15·2 answers
  • Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutron star.
    11·1 answer
  • You walk 4.5 km in one direction then make a 45 degree turn to the right and walk another 6.4 km what is the magnitude of your d
    14·1 answer
  • An aluminum cup of mass 150 g contains 800 g of water in thermal equilibrium at 80.0°C. The combination of cup and water is cool
    8·1 answer
  • a motorcycle is trying to leap across the canyon by driving horizontally off a cliff 38 m/s. Ignoring air resistance, find the s
    11·1 answer
  • Check the attached image for the question~
    12·1 answer
  • If the radius of a coinis 20cm, find its<br>surface area -​
    11·1 answer
  • A flask with a tap has a volume of 200cm3 when full of air, tye flask has a mass of 30.98g. the flask is connected to vacuum pum
    6·1 answer
  • Question is in the pic
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!