Explanation :
(1) Involuntary muscles are the muscles that are not controlled by our will.
(2) Tendons are the connective tissues that join the muscle to bones. Tendons are tissues that have fibers.
(3) Cardiac muscle is also involuntary muscles. For example heart muscle. It shows contraction and relaxation throughout life.
(4) Voluntary muscle is the muscles that are not controlled by our will.
(5) Biceps are the arm muscles.
Hence, this the required explanation as per options.
Answer:
Explanation:
At constant pressure , work done by gas = P x ΔV where P is pressure and ΔV is change in volume
ΔV = 9.2 - 5.6 = 3.6 L
3.6 L = 3.6 x 10⁻³ m³
ΔV = 3.6 x 10⁻³ m³
P = 3.7 x 10³ Pa
So work done
= 3.7 x 10³ x 3.6 x 10⁻³ J
= 13.32 J .
( c ) is the answer , because work is done by the gas so it will be positive.
Assuming the driver starts slamming the brakes immediately, the car moves by uniformly decelerated motion, so we can use the following relationship

(1)
where
a is the deleceration
S is the distance covered after a time t

is the velocity at time t

is the initial speed of the car
The accident is 80 m ahead of the car, so the minimum deceleration required to avoid the accident is the value of a such that S=80 m and

(the car should stop exactly at S=80 m to avoid the accident). Using these data, we can solve the equation (1) to find a:

And the negative sign means it is a deceleration.
First let us assign variables,
d = distance travelled
t = time it took
v = velocity of the commercial airline
In linear physics, the equation for velocity is given as:
v = d / t
Rewriting for d:
d = v t
We know that the distance to and from south America are equal
therefore:
d1 (going) = d2 (return)
Let us say that velocity of air is v3. Since going to South
America, the wind is against the direction of the plane and the return trip is
the opposite, therefore:
(v1 - v3) t1 = (v1 + v3) t2
(v1 – v3) 4 = (v1 + v3) 3.53
4 v1 – 4 v3 = 3.53 v1 + 3.53 v3
0.47 v1 = 7.53 v3
v1 = 16.02 v3
Since we also know that:
(v1 - v3) t1 = 784
(16.02 v3 – v3) * 4 = 784
60.085 v3 = 784
v3 = 13.05 mph
Therefore the speed of the plane in still air, v1 is:
v1 = 16.02 * 13.05
<span>v1 = 209.03 mph (ANSWER)</span>
<span> </span>
Answer:
When the ejected air is moving in the downward direction then the thrust force acts in the upward direction, due to reversal thrust, the jets can take off vertically without needing a runway this way.
Explanation:
Newton’s third law motion states that for every action there will be an equal and opposite reaction.
Thrust reversal is also known as reverse thrust. It acts opposite to the motion of the aircraft by providing the deceleration.
Commercial aircraft moves the ejected air in the forward direction means that the thrust will acts opposite to the motion of the aircraft that is backward direction due to thrust reversal. This thrust force might be used to decelerate the craft.
Uses of thrust reversal in practice:
When the ejected air is moving forward direction then the thrust force moving backward direction due to reversal thrust the speed of the craft slows down.
When the ejected air is moving in the downward direction then the thrust force acts in the upward direction, due to reversal thrust, the jets can take off vertically without needing a runway this way.