Answer:
The pressure of liquid column is given by p=hpg, where h is depth, p is density and g is acceleration due to gravity.
Therefore, pressure of the liquid column increases with depth. The height of the blood column in a human body is more at feet than at the brain. Therefore, the blood pressure in humans is greater at the feet than the brain.
The independent variable is the type of fuel used and the dependent variable is the speed of the race car. The independent variable could be changed through the experimental process to see its relation with the dependent variable<span>. The dependent variable is the result of the independent variable changes.</span>
Answer:
The power for circular shaft is 7.315 hp and tubular shaft is 6.667 hp
Explanation:
<u>Polar moment of Inertia</u>

= 0.14374 in 4
<u>Maximum sustainable torque on the solid circular shaft</u>

=
= 3658.836 lb.in
=
lb.ft
= 304.9 lb.ft
<u>Maximum sustainable torque on the tubular shaft</u>

= 
= 3334.8 lb.in
=
lb.ft
= 277.9 lb.ft
<u>Maximum sustainable power in the solid circular shaft</u>

= 
= 4023.061 lb. ft/s
=
hp
= 7.315 hp
<u>Maximum sustainable power in the tubular shaft</u>

= 
= 3666.804 lb.ft /s
=
hp
= 6.667 hp
The eaths radius is the correct answer, if you need proof look at nasa's website
<h3>
Answer:</h3>
225 meters
<h3>
Explanation:</h3>
Acceleration is the rate of change in velocity of an object in motion.
In our case we are given;
Acceleration, a = 2.0 m/s²
Time, t = 15 s
We are required to find the length of the slope;
Assuming the student started at rest, then the initial velocity, V₀ is Zero.
<h3>Step 1: Calculate the final velocity, Vf</h3>
Using the equation of linear motion;
Vf = V₀ + at
Therefore;
Vf = 0 + (2 × 15)
= 30 m/s
Thus, the final velocity of the student is 30 m/s
<h3>Step 2: Calculate the length (displacement) of the slope </h3>
Using the other equation of linear motion;
S = 0.5 at + V₀t
We can calculate the length, S of the slope
That is;
S = (0.5 × 2 × 15² ) - (0 × 15)
= 225 m
Therefore, the length of the slope is 225 m