The upward force of the chain on the diamond would be the tension in the chain, and this tension would have to support the weight of the 45g that hangs from the chain.
mass = 45 g = 45/1000 kg = 0.045kg
Weight = mg = 0.045 * 10 ≈ 0.45N, g ≈ 10 m/s²
<span>So the upward force is ≈ </span><span>0.45N. </span>
If Earth were 10.0 times farther away from the Sun than it is now, 100 times weaker would the gravitational force between the Sun and Earth.
What is Gravitational Force?
According to Newton's universal law of gravitation, The force of attraction between any two bodies is directly proportional to the product of their masses and is inversely proportional to the square of the distance between them.
What causes gravitational force?
Earth's gravity comes from all its mass. All its mass makes a combined gravitational pull on all the mass in your body. That's what gives you weight. And if you were on a planet with less mass than Earth, you would weigh less than you do here.
Learn more about gravitational force:
brainly.com/question/862529
#SPJ4
Nichrome wire. That's the stuff that toasters are made from. The resistance is pretty high, considering the diameter. 1 meter is at about the same guage as that listed below for copper is about 96 ohms.
Most of the time you are trying to use wire with the least resistance.
A meter of copper has a listed resistance of 0.024 ohms / meter. The wire is a 19 guage wire which makes it pretty thin.
===============
I'm not sure what you are asking. If want the resistance of something in terms of what would increase the resistance of the same material for both calculations then
Rule 1: It you decrease the wire diameter, you increase the resistance
Rule 2: If you increase the length of the wire, you increase the resistance.
Both rules assume you are using something like copper.
Explanation:
∆x=300 m×2
∆t=1.5 s
v=∆x/∆t → v=2×300/1.5 = 400 m/s
Downward movement under the force of gravity only.