Answer:
a = 5.5 [m/s²]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the force is equal to the product of mass by acceleration.
ΣF =m*a
where:
F = Force [N] (units of Newtons)
m = mass = 20 [kg]
a = acceleration [m/s²]
Let's take the force of 230 [N] as positive, in this way the other force will be negative, by pointing in the opposite direction.
![230 - 120 = 20*a\\110 = 20*a\\a=5.5 [m/s^{2} ]](https://tex.z-dn.net/?f=230%20-%20120%20%3D%2020%2Aa%5C%5C110%20%3D%2020%2Aa%5C%5Ca%3D5.5%20%5Bm%2Fs%5E%7B2%7D%20%5D)
It takes him
t = 16 miles / 156 mph = 0.1 hours
Answer:
0.3817 N
Explanation:
Remark
One thing is certain: the ball has a mass of 101 grams wherever it is in the universe. That is not true of the force. The force on the moon is a whole lot less than it is on earth, and maybe planet x as well.
Givens
m = 101 g
vi = 0 That's what at rest means.
t = 2.91 s
d = 16 m
F= ?
Formulas
d = vi*t + 1/2*a * t^2
Force = m * a
Solution
16 = 0 + 1/2 a * 2.91^2
16 = 4.234 a Divide by 4.234
16/4.234 = a
a = 3.779
F = m * a
a = 3.779
m = 101 g = 1 kg / 1000 grams
m = 0.101 kg
F = 0.101 * 3.779
F = 0.3817N
(a) The object moves with uniform velocity from A to B.
(b) The object moves with constant velocity from B to C.
(c) The object moves with increasing velocity from C to D.
<h3>
Velocity of the object from point A to B</h3>
V(A to B) = (6 - 0)/(4 - 0) = 1.5 m/s
<h3>
Velocity of the object from point B to C</h3>
V(B to C) = (6 - 6)/(11 - 4) = 0 m/s
<h3>
Velocity of the object from point C to D</h3>
V(C to D) = (7 - 6)/(12 - 11) = 1 m/s
final velocity = 1 + 1.5 m/s = 2.5 m/s
Thus, we can conclude the following;
The object moves with uniform velocity from A to B.
The object moves with constant velocity from B to C.
The object moves with increasing velocity from C to D.
Learn more about velocity here: brainly.com/question/6504879
#SPJ1
Answer:
delta r(x) = (delta (r)) * cos(alpha), delta r(y) = (delta(r)) * sin(alpha)
Explanation:
Well it's a simple rule I guess...