Answer: We don’t really ever need to know how to dissect a frog but hey, one day maybe I’ll need to give a frog a discectomy
Using Newton's second law of motion:
F=ma ; [ F = force (N: kgm/s^2);m= mass (kg); a = acceleration (m/s^2)
Given: Find: Formula: Solve for m:
F: 2500N mass:? F=ma Eq.1 m=F/a Eq. 2
a= 200m/s^2
Solution:
Using Eq.2
m= (2500 kgm/s^2)/ (200m/s^2) = 12.5 kg
There isnt enough information to answer the question, the missing variable is "distance from said falling spot and ground"
The comparison of the forces in a small nucleus to the forces of a large one is the fact that they are capable of holding the protons and neutrons which made it no matter what their size may be. Therefore, as long as there is a nucleus, their forces can both hold together the two atoms tight.
The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.
<h3>How can the height of a dropped ball be determined?</h3>
Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.
A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.
The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.
To Learn more About potential energy, Refer:
brainly.com/question/14427111
#SPJ10