Answer: 996 mmHg
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at NTP, weighs equal to the molecular mass and contains avogadro's number
of particles.
According to the ideal gas equation:

P = Pressure of the gas = ?
V= Volume of the gas = 25.5 L
T= Temperature of the gas = 13°C = (273+13) K = 286K
R= Gas constant = 0.0821 atmL/K mol
n= moles of gas= 1.42
(760mmHg=1atm)
Thus pressure of this gas sample is 996 mm Hg.
Voltmeter is the device that is used to measure the potential difference across the battery.
<h2>What are the usage of voltmeter?</h2><h3 /><h3>Usage of Voltmeter</h3>
Voltmeter is an instrument that measures voltages of both direct and alternating electric current. On a scale of voltmeter usually graduated in volts, millivolts (0.001 volt), or kilovolts (1,000 volts).
Voltmeter is connected in parallel form. It has a high resistance so that it takes negligible current from the circuit so we can conclude that Voltmeter is the device that is used to measure the potential difference across the battery.
It actually depends on the percentage of the concentration give. Percentages can be expressed as %mass/mass, %volume/volume or %mass/volume. To keep things simple, let's just assume that it is in %volume/volume. Thus, 13% of 520 mL is pure acid.
Volume of pure acid = 520*0.13 = 67.6 mL
Answer:
h2+O ---> H2O
reactants: H2 & O
products: H2O
Explanation:
The simple reaction that produces a water molecule from H2 and O would be the one written above, even though there are 2 hydrogen molecules, they will form an H2 molecule rather than 2 individual H molecules (almost never seen) the reactants would be your hydrogen and oxygen molecules individually before they bond to form a molecule of water (H2O) which is the product