Answer:
The given molecules are SO2 and BrF5.
Explanation:
Consider the molecule SO2:
The central atom is S.
The number of domains on S in this molecule is three.
Domain geometry is trigonal planar.
But there is a lone pair on the central atom.
So, according to VSEPR theory,
the molecular geometry becomes bent or V-shape.
Hybridization on the central atom is
.
Consider the molecule BrF5:
The central atom is Br.
The number of domains on the central atom is six.
Domain geometry is octahedral.
But the central atom has a lone pair of electrons.
So, the molecular geometry becomes square pyramidal.
The hybridization of the central atom is
.
The shapes of SO2 and BrF5 are shown below:
Answer:
Heat is a measure of the flow of thermal energy from one object or substance to another. ... Thermal energy typically flows from a warmer material to a cooler material. Generally, when thermal energy is transferred to a material, the motion of its particles speeds up and its temperature increases.
Explanation:
Answer : The pH of the solution is, 9.63
Explanation : Given,
The dissociation constant for HCN = 
First we have to calculate the moles of HCN and NaCN.

and,

The balanced chemical reaction is:

Initial moles 0.1116 0.0461 0.08978
At eqm. (0.1116-0.0461) 0 (0.08978+0.0461)
0.0655 0.1359
Now we have to calculate the pH of the solution.
Using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
Now put all the given values in this expression, we get:


Therefore, the pH of the solution is, 9.63
Answer:
Al2O3 + H2SO4 = Al2(SO4)3 + H2O
Explanation: