Answer:
1317.4 m
Explanation:
We are given that
Angle=
Initial speed =
We have to find the horizontal distance covered by the shell after 5.03 s.
Horizontal component of initial speed=
Vertical component of initial speed=
Time=t=5.03 s
Horizontal distance =
Using the formula
Horizontal distance=
Horizontal distance=1317.4 m
Hence, the horizontal distance covered by the shell=1317.4 m
What do we know that might help here ?
-- Temperature of a gas is actually the average kinetic energy of its molecules.
-- When something moves faster, its kinetic energy increases.
Knowing just these little factoids, we realize that as a gas gets hotter, the average speed of its molecules increases.
That's exactly what Graph #1 shows.
How about the other graphs ?
-- Graph #3 says that as the temperature goes up, the molecules' speed DEcreases. That can't be right.
-- Graph #4 says that as the temperature goes up, the molecules' speed doesn't change at all. That can't be right.
-- Graph #2 says that after the gas reaches some temperature and you heat it hotter than that, the speed of the molecules starts going DOWN. That can't be right.
--
Answer:
Explanation:
Let the potential difference between the plate is V . Then in the first case
Electric field E between plate
E₁ = V / d
where d is separation between plate
When the plate separation becomes d / 2
Electric field E between plate
E₂ = V / d /2
= 2 V / d =2E₁
Or twice the earlier field
Answer:
The answer to your question is below
Explanation:
Data
light speed = 300 000 km/s
a) Express it in scientific notation
to do it, we just move the decimal point 5 places to the left
300 000 = 3.0 x 10 ⁵ km/s
b) Convert this value to meters per hour
(300 000 km/s)(1000 m/1 km)(3600 s/1 h) = 300000x1000x3600 / 1x1x1
= 1.08 x 10¹² m/h
c) What distance in centimeters does light travel in 1 s?
data
v = 300 000 km/s
d = ?
t = 1 s
formula v = d/t we clear distance d = vxt
d = 300000 x 1 = 300000 km
d = 300000000 m = 30000000000 cm
Answer:
It's either B or D, I'm not positive which it is
Explanation: