The family of electromagnetic waves ranges from the Long Radio waves to the gama rays.
All of that contain electromagnetic energy and move at the speed of light.
But what distinguish one from another is their wavelengh.
Or, if you like, its counterpart: their frequency. (as can be seen in the equation c = λ . f where c is the speed of light, λ is the wavelengh and f is the frequency).
The shorter the wavelengh (the greater the frequency) more powerful (more energy it contains) is the electromagnetic wave.
From all the different kinds of electromagnetic waves of the spectrum, the less powerful (less energetic) are the Long Radio waves (λ in metres) and the more powerful ones are the gama rays (λ in
m).
:-)
Answer:

Explanation:
given,
total deflection = 4.12 cm
Electric field = 1.1 ×10³ V/m
plate length = 6 cm
distance between them = 12 cm
using formula

q = 1.6 × 10⁻¹⁹ C
m = 9.11 x 10⁻³¹ kg
d = 0.06 m
L = 0.12 m

v_0 = 6496355.63 m/s




Answer:
Walking’ - If a handball player takes more than three steps without dribbling (bouncing the ball) or holds the ball for more than 3 seconds without bouncing it, shooting or passing, then that is deemed ‘walking' and possession is lost.
'Double dribble’ - Handball players cannot receive the ball and bounce it, then hold the ball, and bounce it again. This is termed ‘double dribble’ and is against the rules.
Askmeanything2♡
To get the total resistance in a parallel circuit, you need to remember that unlike in a series, you do not just merely add the resistances. You need to get the reciprocal first of each resistance and add them together.

After adding them, you will get the reciprocal again and then compute for the value. The problem says that there are 4 resistors in the circuit that have a resistance of 75.

Add up the numerator and copy the denominator:

Then get the reciprocal to get the total resistance:

The answer to your question then is A. 18.8.
The tension in the upper rope is determined as 50.53 N.
<h3>Tension in the upper rope</h3>
The tension in the upper rope is calculated as follows;
T(u) = T(d)+ mg
where;
- T(u) is tension in upper rope
- T(d) is tension in lower rope
T(u) = 12.8 N + 3.85(9.8)
T(u) = 50.53 N
Thus, the tension in the upper rope is determined as 50.53 N.
Learn more about tension here: brainly.com/question/918617
#SPJ1