Answer:
The grinding machine is used for roughing and finishing flat, cylindrical, and conical surfaces; finishing internal cylinders or bores; forming and sharpening cutting tools; snagging or removing rough projections from castings and stampings; and cleaning, polishing, and buffing surfaces.
Answer:

Explanation:
the half life of the given circuit is given by

where [/tex]\tau = RC[/tex]

Given 
resistance in the circuit is 40 ohm and to extend the half cycle we added new resister of 48 ohm. the net resitance is 40+48 = 88 ohms
now the new half life is

Divide equation 2 by 1


putting all value we get new half life


Answer:
Explanation:
There are a total of 6 states and 3 bits in this problem. Whenever the Reset button is pressed, RESET state is called otherwise the state according to the diagram is called. For the combination to be "01011", the input sequence has to be in the same order. If 0 is pressed instead of 1 in state "010", the last state of output ending with 0 will be called and likewise in all the states that follow.
Answer:

Explanation:
Given that
R=8 ft
Width= 10 ft
We know that hydro statics force given as
F=ρ g A X
ρ is the density of fluid
A projected area on vertical plane
X is distance of center mass of projected plane from free surface of water.
Here
X=8/2 ⇒X=4 ft
A=8 x 10=80 
So now putting the values
F=ρ g A X
F=62.4(32.14)(80)(4)

Answer:
Free convection:
When heat transfer occurs due to density difference between fluid then this type of heat transfer is know as free convection.The velocity of fluid is zero or we can say that fluid is not moving.
Force convection:
When heat transfer occurs due to some external force then this type of heat transfer is know as force convection.The velocity of fluid is not zero or we can say that fluid is moving in force convection.
Heat transfer coefficient of force convection is high as compare to the natural convection.That is why heat force convection reach a steady-state faster than an object subjected to free-convection.
We know that convective heat transfer given as
q = h A ΔT
h=Heat transfer coefficient
A= Surface area
ΔT = Temperature difference