Explanation:
A physical change is change that alters the physical properties of matter especially its form and state.
In many cases, the change is easily reversible.
Examples are change of state such as boiling, melting, freezing, condensation, sublimation e.t.c
A chemical change is one in which a new kind of matter is formed. It is always accompanied by energy changes.
Examples are combustion, rusting , precipitation, milk souring.
- Chemical changes are irreversible
- Physical changes do not lead to the formation of new kinds of matter.
- Most physical changes requires little energy.
You can use this knowledge to solve your problem
learn more:
Chemical change brainly.com/question/9388643
#learnwithBrainly
I think the answer is tenfold
hope this helps :)
Answer:
Atoms
Explanation:
Energy, potential energy, is stored in the covalent bonds holding atoms together in the form of molecules. This is often called chemical energy.
<u>Given:</u>
H2(g) + Cl2 (g) → 2HCl (g)
<u>To determine:</u>
The enthalpy of the reaction and whether it is endo or exothermic
<u>Explanation:</u>
Enthalpy of a reaction is given by the difference between the enthalpy of formation of reactants and products
ΔH = ∑nHf (products) - ∑nHf (reactants)
= [2Hf(HCl)] - [Hf(H2) + Hf(Cl2)] = 2 (-92.3) kJ = - 184.6 kJ
Since the reaction enthalpy is negative, the reaction is exothermic
<u>Ans:</u> The enthalpy of reaction is -184. kJ and the reaction is exothermic
Answer:
Mass of Ag produced = 64.6 g
Note: the question is, how many grams of Ag is produced from 19.0 g of Cu and 125 g of AgNO3
Explanation:
Equation of the reaction:
Cu + 2AgNO3 ---> 2Ag + Cu(NO3)2
From the equation above, 1 mole of Cu reacts with 2 moles of AgNO3 to produce 2 moles of Ag and 1 mole of Cu(NO3)2.
Molar mass of the reactants and products are; Cu = 63.5 g/mol, Ag = 108 g/mol, AgNO3 = 170 g/mol, Cu(NO3)2 = 187.5 g/mol
To determine, the limiting reactant;
63.5 g of Cu reacts with 170 * 2 g of AgNO3,
19 g of Cu will react with (340 * 19)/63.5 g of AgNO3 =101.7 g of AgNO3.
Since there are 125 g of AgNO3 available for reaction, it is in excess and Cu is the limiting reactant.
63.5 g of Cu reacts to produce 108 * 2 g of Ag,
19 g of Cu will react to produce (216 * 19)/63.5 g of Ag = 64.6 g of Ag.
Therefore mass of Ag produced = 64.6g