Answer:
600 J
Explanation:
The formula to find the kinetic energy of an object is
- m = mass in kg
- V = velocity in m/s
- KE is measured in Joules just as all other forms of energy.
Now, let's plug in the variables we're given and simplify.
Thus, the answer is 600 Joules.
Its very simple if a body is moving in circle the magnitude of its velocity remain constant but its direction changes because velocity is directed towards tangent and at every point in a cirlce its direction will be different (along tangent) so velocity is not uniform .As acceleration is the rate change of velocity so it will be non zero because velocity is changing due to its direction.
Answer:
The wavelength of the visible line in the hydrogen spectrum is 434 nm.
Explanation:
It is given that, the wavelength of the visible line in the hydrogen spectrum that corresponds to n₂ = 5 in the Balmer equation.
For Balmer series, the wave number is given by :

R is the Rydberg's constant
For Balmer series, n₁ = 2. So,


or

So, the wavelength of the visible line in the hydrogen spectrum is 434 nm. Hence, this is the required solution.
The statement describes something that would not affect the results of the replicated experiment is option A. (The two experiments were completed by two different people)
<h3>
What is an experiment?</h3>
An experiment can be defined as a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried.
Experiments helps in the provision of insight into the cause-and-effect by demonstrating what outcome occurs when a particular factor is manipulated.
If two experiments were completed by two different people, it would not affect the results if the experiment is replicated.
The purpose of any experiment is to test or verify a hypothesis
Learn more about experiments at: brainly.com/question/26117248
#SPJ1
Answer:
K = 1.29eV
Explanation:
In order to calculate the kinetic energy of the proton you first take into account the uncertainty principle, which is given by:
(1)
Δx : uncertainty of position = 2.0pm = 2.0*10^-12m
Δp: uncertainty of momentum = ?
h: Planck's constant = 6.626*10^-34 J.s
You calculate the minimum possible value of Δp from the equation (1):

The minimum kinetic energy is calculated by using the following formula:
(2)
m: mass of the proton = 1.67*10^{-27}kg

in eV you have:

The kinetic energy of the proton is 1.29eV