So we want to explain the effects of time dilation. In theory of relativity time dilation is the difference of elapsed time between two events when measured by two observers who are moving relatively to each other. A clock of an observer that is standing still in an inertial frame of reference is going to measure a different time of an event than the clock of an observer that is moving with some velocity with respect to the inertial reference frame that is not moving. In a nutshell, the moving clock is ticking slower than the clock that is standing still.
Answer:
3.7kg
Explanation:
The following data were obtained from the question:
Volume = 3.7L
Mass =?
Next, we shall convert 3.7L to m³.
This is illustrated below:
1000L = 1m³
Therefore, 3.7L = 3.7/1000 = 0.0037m³
Now, we can obtain the mass of the water as shown below:
Density of water = 1000kg/m³
Volume of water = 0.0037m³
Mass of water =..?
Density = Mass /volume
1000kg/m³ = Mass /0.0037m³
Cross multiply
Mass = 1000Kg/m³ × 0.0037m³
Mass = 3.7Kg
Therefore, the mass of the water is 3.7Kg.
To have a uniform field. The field is the voltage between the plates divided by the distance between the plates. If the distance varies so would the field between them.
Answer:
Δy = v₀t + (1/2)gt²
where g = 9.81 m/s if the body is moving downwards and g = -9.81 m/s if the body is moving upwards
Explanation:
The general kinematic equation for horizontal displacement is gives as:
Δx = v₀t + (1/2)at²
Where
Δx = change in the x direction
v₀ = initial velocity
t = time
a = acceleration
If the body is vertically instead of horizontally, Δx is changed to Δy
Δy = v₀t + (1/2)at²
For a vertical moving body, the acceleration it experiences is the gravitational accerelation of the earth 'g'
So the equation becomes:
Δy = v₀t + (1/2)gt²
where g = 9.81 m/s if the body is moving downwards and g = -9.81 m/s if the body is moving upwards
Answer:
lowest level contains more energy
Explanation: