Answer:
F = 2.6692 x 10⁻⁹ N
Explanation:
Given,
The mass of the rock, m = 10 kg
The mass of the boulder, M = 100 kg
The distance between them, d = 5 m
The gravitational force between the two bodies is proportional to the product of their masses and inversely proportional to the square of the distance between them. It is given by the formula
<em> F = GMm/d² newton</em>
Where,
G - Universal gravitational constant
Substituting the given values,
F = 6.673 x 10⁻¹¹ x 100 x 10 / 5²
F = 2.6692 X 10⁻⁹ N
Hence, the force between the two bodies is, F = 2.6692 X 10⁻⁹ N
Answer:
5.2791264*10¹³
Explanation:
Convert the 9 years to seconds and then multiple it by 186000
Answer:

Explanation:
We are given that
The wavelength of sound wave=
1 cm/s=
Speed of sound wave,v=
We have to find the period of the wave.
We know that
Frequency=
Using the formula
Frequency =
Hz
Time period=
Using identity:
Hence, the time period of the wave=
Explanation:
if two individual forces are of equal magnitude and opposite direction, then the force is said to be balanced. when there is an individual force that is not being balanced by a force of equal magnitude and in the opposite direction.
Answer: Peak wavelength
{lambda max}
= 9.7*EXP{-7}meter
Which is approximately,
1 micro-meter.
Explanation: lambda{max} which is peak wavelength is inversely proportional to temperature {T}.This is given by the wiens displacement law.
Lambda max
=max displacement{Xmax} / T
For the first case at T = 6000K
Lambda max = 483 nano-meter
=483*EXP{-9}meter.
So let's solve for max displacement {Xmax}.
Xmax = T*lambda max
= 6000*483*EXP{-9}
=2.898*EXP{-3}kelvin-meter
Xmax would be constant during Temperature change.
Therefore lambda max at 3000K would be,
Lambda max
= {2.898*EXP{-3} K-m} / 3000K
= 9.7*EXP{-7} meter
Which is approximately,
1*EXP{-6} meter= 1 micro-meter
NOTE: EXP used here means 10^.