Answer:
A walkthrough for a sample titration calculation for all levels of chemistry. ... Now that gives us the moles of Fe2+, but it's asking for how many grams there are. ... The molar mass of iron is about 55.8, so we'll just put that.
অনুপস্থিত: 80%
Explanation:
<span>Answer:
A 0.04403 g sample of gas occupies 10.0-mL at 289.0 K and 1.10 atm. Upon further analysis, the compound is found to be 25.305% C and 74.695% Cl. What is the molecular formula of the compound?
--------------------------------------...
Seems like I did a problem very similar to this--this must be the "B" test. But the halogen was different.
25.305% C/12 = 2.108
74.695% Cl/35.5 = 2.104
So the empirical formula would be CH. However, there are many compounds which fit this bill, so we have to use the gas data. (And I made, in the previous problem, the simplifying assumption that 289C and 1.10 atm would offset each other, so I'll do that, too.)
0.044 grams/10 ml = x/22.4 liters
0.044g/0.010 liters = x/22.4 liters
22.4 liters/0.010 liters = 2240 (ratio)
2240 x .044 = 98.56 (actual atomic weight)
CCl = 35.5+12 or 47.5, so two of those is 95 grams/mole.
This is sufficiient to distinguish C2CL2, (dichloroacetylene)
from C6CL6 (hexachlorobenzene) which would
mass 3 times as much.</span>
Answer:
Rosalind Elsie Franklin (25 July 1920 – 16 April 1958)was a British biophysicist and X-ray crystallographer who made critical contributions to the understanding of the fine molecular structures of DNA, RNA, viruses, coal and graphite. The DNA work achieved the most fame because DNA (deoxyribonucleic acid) plays essential roles in cell metabolism and genetics, and the discovery of its structure helped scientists understand how genetic information is passed from parents to children.
rosalindfranklin
Franklin is best known for her work on the X-ray diffraction images of DNA which led to discovery of DNA double helix. Her data, according to Francis Crick, was "the data we actually used" to formulate Crick and Watson's 1953 hypothesis regarding the structure of DNA.Franklin's X-ray diffraction image confirming the helical structure of DNA were shown to Watson without her approval or knowledge. Though this image and her accurate interpretation of the data provided valuable insight into the DNA structure, Franklin's scientific contributions to the discovery of the double helix are often overlooked. Unpublished drafts of her papers (written just as she was arranging to leave King's College London) show that she had independently determined the overall B-form of the DNA helix and the location of the phosphate groups on the outside of the structure. However, her work was published third, in the series of three DNA Nature articles, led by the paper of Watson and Crick which only hinted at her contribution to their hypothesis.
After finishing her portion of the DNA work, Franklin led pioneering work on the tobacco mosaic and polio viruses. She died in 1958 at the age of 37 from complications arising from ovarian cancer.