Answer:
6.533 × 10^-21J
Explanation:
The energy of the microwave photon can be calculated using:
E = hf
Where;
E = energy of photon (J)
h = Planck's constant (6.626 × 10^-34 J/s)
f = frequency (9.86 x 10^12 Hz)
Hence, E = hf
E = 6.626 × 10^-34 × 9.86 x 10^12
E = 65.33 × 10^(-34 + 12)
E = 65.33 × 10^(-22)
E = 6.533 × 10^-21J
The energy of the microwave photon is
6.533 × 10^-21J
<u>Answer:</u> The amount of water required to prepare given amount of salt is 398.4 mL
<u>Explanation:</u>
To calculate the volume of solution, we use the equation used to calculate the molarity of solution:

We are given:
Molarity of solution = 0.16 M
Given mass of manganese (II) nitrate tetrahydrate = 16 g
Molar mass of manganese (II) nitrate tetrahydrate = 251 g/mol
Putting values in above equation, we get:

Volume of water = Volume of solution = 398.4 mL
Hence, the amount of water required to prepare given amount of salt is 398.4 mL
Answer:
A) involves changes in temperature
Explanation:
The figure is missing, but I assume that the region marked X represents the region in common between Gay-Lussac's law and Charle's Law.
Gay-Lussac's law states that:
"For an ideal gas kept at constant volume, the pressure of the gas is directly proportional to its absolute temperature"
Mathematically, it can be written as

where p is the pressure of the gas and T its absolute temperature.
Charle's Law states that:
"For an ideal gas kept at constant pressure, the volume of the gas is directly proportional to its absolute temperature"
Mathematically, it can be written as

where V is the volume of the gas and T its absolute temperature.
By looking at the two descriptions of the law, we see immediately that the property that they have in common is
A) involves changes in temperature
Since the temperature is NOT kept constant in the two laws.