Answer:
The uncertainty in the location that must be tolerated is 
Explanation:
From the uncertainty Principle,
Δ
Δ

The momentum P
= (mass of electron)(speed of electron)
= 
= 
If the uncertainty is reduced to a 0.0010%, then momentum
= 
Thus the uncertainty in the position would be:
Δ
Δ
Answer:
Explanation:
Area A of the coil = .1 x .1 = .01 m²
no of turns n = 5
magnetic field B = .5 t²
Flux Φ perpendicular to plane passing through it.= nBA sin30
rate of change of flux
dΦ/dt = nAdBsin30 / dt
= nA d/dt (.5t²x .5 )
= nA x 2 x .25 x t
At t = 4s
dΦ/dt = nA x 2
= 5x .01 x 2
= .1
current = induced emf / resistance
= .1 / 4
= .025 A
= 25 mA.
Answer:
=1419.19 meters.
Explanation:
The time it takes for the shell to drop to the tanker from the height, H =1/2gt²
610m=1/2×9.8×t²
t²=(610m×2)/9.8m/s²
t²=124.49s²
t=11.16 s
Therefore, it takes 11.16 seconds for a free fall from a height of 610m
Range= Initial velocity×time taken to hit the tanker.
R=v₁t
Lets change 300 mph to kph.
=300×1.60934 =482.802 kph
Relative velocity=482.802 kph-25 kph
=457.802 kph
Lets change 11.16 seconds to hours.
=11.16/(3600)
=0.0031 hours.
R=v₁t
=457.802 kph × 0.0031 hours.
=1.41918 km
=1.41919 km × 1000m/km
=1419.19 meters.
Answer:d
Explanation:
Suppose V is the voltage of battery and R is the resistance of bulb
so Power drop for initial stage

When another identical bulb of same resistance is applied in parallel so voltage Drop across both the resistor will be same i.e. V
so Power consumed 
so there is no change in power and hence no dip in brightness