Explanation:
The given data is as follows.
= 98.70 kPa = 98700 Pa,
T =
= (30 + 273) K = 303 K
height (h) = 30 mm = 0.03 m (as 1 m = 100 mm)
Density = 13.534 g/mL = 
= 13534 
The relation between pressure and atmospheric pressure is as follows.
P = 
Putting the given values into the above formula as follows.
P = 
= 
= 102683.05 Pa
= 102.68 kPa
thus, we can conclude that the pressure of the given methane gas is 102.68 kPa.
Answer:
626.7nm
Explanation:
The energy of a photon is defined as:
E = hc / λ
<em>Where E is the energy of the photon, h is Planck constant (6.626x10⁻³⁴Js), c is speed of light (3x10⁸m/s) and </em>λ is the wavelength of light
The energy of 1 photon is:
(191000 J / mol) ₓ (1 mole / 6.022x10²³) = 3.1717x10⁻¹⁹ J
Replacing:
3.1717x10⁻¹⁹ J = <em>6.626x10⁻³⁴Jsₓ3x10⁸m/s / </em>λ
λ = 6.267x10⁻⁷m
as 1nm = 1x10⁻⁹m:
6.267x10⁻⁷m ₓ (1nm / 1x10⁻⁹m) =
<h3>626.7nm</h3>
I think 3 of them are its been 1 half years since ive done this i dont take chemistry anymore
Answer:
Na₂CO₃•H₂O
Explanation:
After it is heated, the remaining mass is the mass of sodium carbonate.
30.2 g Na₂CO₃
Mass is conserved, so the difference is the mass of the water:
35.4 g − 30.2 g = 5.2 g H₂O
Convert masses to moles:
30.2 g Na₂CO₃ × (1 mol Na₂CO₃ / 106 g Na₂CO₃) = 0.285 mol Na₂CO₃
5.2 g H₂O × (1 mol H₂O / 18.0 g H₂O) = 0.289 mol H₂O
Normalize by dividing by the smallest:
0.285 / 0.285 = 1.00 mol Na₂CO₃
0.289 / 0.285 = 1.01 mol H₂O
The ratio is approximately 1:1. So the formula of the hydrate is Na₂CO₃•H₂O.