Answer:
1864 R 2
Step-by-step explanation:
Answer: A parallelogram is a rectangle.
Step-by-step explanation:
This is always true. Â Squares are quadrilaterals with 4 congruent sides and 4 right angles, and they also have two sets of parallel sides. Parallelograms are quadrilaterals with two sets of parallel sides. ... A parallelogram is a rectangle.
The given plane,
, has normal vector
. Any plane parallel to this one has the same normal vector.
Let
be any point in the plane we want. The plane contains the point (1, 1, -1), so an arbitrary vector in this plane is

and this is perpendicular to
.
So the equation of the plane is

or equivalently,

Answer:
Option c, A square matrix
Step-by-step explanation:
Given system of linear equations are



Now to find the type of matrix can be formed by using this system
of equations
From the given system of linear equations we can form a matrix
Let A be a matrix
A matrix can be written by
A=co-efficient of x of 1st linear equation co-efficient of y of 1st linear equation constant of 1st terms linear equation
co-efficient of x of 2st linear equation co-efficient of y of 2st linear equation constant of 2st terms linear equation
co-efficient of x of 3st linear equation co-efficient of y of 3st linear equation constant of 3st terms linear equation 
which is a
matrix.
Therefore A can be written as
A= ![\left[\begin{array}{lll}3&-2&-2\\7&3&26\\-1&-11&46\end{array}\right] 3\times 3](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Blll%7D3%26-2%26-2%5C%5C7%263%2626%5C%5C-1%26-11%2646%5Cend%7Barray%7D%5Cright%5D%203%5Ctimes%203)
Matrix "A" is a
matrix so that it has 3 rows and 3 columns
A square matrix has equal rows and equal columns
Since matrix "A" has equal rows and columns Therefore it must be a square matrix
Therefore the given system of linear equation forms a square matrix
To check if a relation is a function, given a mapping diagram of the relation, use the following criterion: If each input has only one line connected to it, then the outputs are a function of the inputs.