I can't answer this question if the structural formula is not given. However, I found a similar problem in terms of wording. Taking this problem to be solved, let's take a look at the structural formula as shown in the second picture. First, you must know the parent chain, which is the longest chain. This is a trial-and-error process. The longest chain which has a branching group that is nearest to the head is the correct numbering. In this case, the longest chain has 8 carbon atoms. Thus, the base of the name if octane. Because a 3-carbon chain is branching from the 4th carbon, the IUPAC name of the compound shown is:
<em>4-propyloctane.</em>
The answer is Thickness of solution.
The Beer-Lambert Law equation has the following form:
A=E×b×c
Where A is absorbance, E <span>is the molar absorbtivity, </span>b is the path length of the sample and c <span>is the concentration of the compound in solution.
</span>
<span>Lamber-Ber's law shows that the absorbance of a solution is directly proportional to the concentration of the species to be absorbed, as well as the length of the path. For example, if the length of the path is constant, the UV / VIS spectroscopy can be used to determine the concentration of the absorbent substance in the solution.</span>
The solar system consist of stars and sun
Answer:
Explanation: Does any of this look right? To be honest I just looked it up.
Matter is predominantly know to exist in three states-
-Solid
-Liquid
-Gas
The three states can be interconverted at appropriate temperature and pressure conditions. Each state exhibits unique properties which are influenced by the intermolecular forces that hold the atoms together in these states.
Ans: Thus, Every time matter changes from a liquid to a gas, the matter also experiences a change in the <u>state (or phase)</u>